
pashler-44093 book December 18, 2001 10:10

CHAPTER 1

Representational Measurement Theory

R. DUNCAN LUCE AND PATRICK SUPPES

CONCEPT OF REPRESENTATIONAL
MEASUREMENT

Representational measurement is, on the one
hand, an attempt to understand the nature of
empirical observations that can be usefully
recoded, in some reasonably unique fashion,
in terms of familiar mathematical structures.
The most common of these representing struc-
tures are the ordinary real numbers ordered in
the usual way and with the operations of ad-
dition, +, and/or multiplication, ·. Intuitively,
such representations seems a possibility when
dealing with variables for which people have
a clear sense of “greater than.” When data can
be summarized numerically, our knowledge
of how to calculate and to relate numbers can
usefully come into play. However, as we will
see, caution must be exerted not to go beyond
the information actually coded numerically. In
addition, more complex mathematical struc-
tures such as geometries are often used, for
example, in multidimensional scaling.

On the other hand, representational mea-
surement goes well beyond the mere construc-
tion of numerical representations to a careful
examination of how such representations re-
late to one another in substantive scientific
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theories, such as in physics, psychophysics,
and utility theory. These may be thought of
as applications of measurement concepts for
representing various kinds of empirical rela-
tions among variables.

In the 75 or so years beginning in 1870,
some psychologists (often physicists or phy-
sicians turned psychologists) attempted to
import measurement ideas from physics, but
gradually it became clear that doing this suc-
cessfully was a good deal trickier than was
initially thought. Indeed, by the 1940s a num-
ber of physicists and philosophers of physics
concluded that psychologists really did not
and could not have an adequate basis for mea-
surement. They concluded, correctly, that the
classical measurement models were for the
most part unsuited to psychological phenom-
ena. But they also concluded, incorrectly, that
no scientifically sound psychological mea-
surement is possible at all. In part, the theory
of representational measurement was the re-
sponse of some psychologists and other social
scientists who were fairly well trained in the
necessary physics and mathematics to under-
stand how to modify in substantial ways the
classical models of physical measurement to
be better suited to psychological issues. The
purpose of this chapter is to outline the high
points of the 50-year effort from 1950 to the
present to develop a deeper understanding of
such measurement.

1
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Empirical Structures

Performing any experiment, in particular a
psychological one, is a complex activity that
we never analyze or report completely. The
part that we analyze systematically and re-
port on is sometimes called a model of the
data or, in terms that are useful in the the-
ory of measurement, an empirical structure.
Such an empirical structure of an experiment
is a drastic reduction of the entire experi-
mental activity. In the simplest, purely psy-
chological cases, we represent the empirical
model as a set of stimuli, a set of responses,
and some relations observed to hold between
the stimuli and responses. (Such an empirical
restriction to stimuli and responses does not
mean that the theoretical considerations are
so restricted; unobservable concepts may well
play a role in theory.) In many psychological
measurement experiments such an empirical
structure consists of a set of stimuli that vary
along a single dimension, for example, a set
of sounds varying only in intensity. We might
then record the pairwise judgments of loud-
ness by a binary relation on the set of stimuli,
where the first member of a pair represents
the subject’s judgment of which of two sounds
was louder.

The use of such empirical structures in
psychology is widespread because they come
close to the way data are organized for subse-
quent statistical analysis or for testing a theory
or hypothesis.

An important cluster of objections to the
concept of empirical structures or models of
data exists. One is that the formal analysis
of empirical structures includes only a small
portion of the many problems of experimen-
tal design. Among these are issues such as
the randomization of responses between left
and right hands and symmetry conditions in
the lighting of visual stimuli. For example, in
most experiments that study aspects of vision,
having considerably more intense light on the

left side of the subject than on the right would
be considered a mistake. Such considerations
do not ordinarily enter into any formal de-
scription of the experiment. This is just the
beginning. There are understood conditions
that are assumed to hold but are not enumer-
ated: Sudden loud noises did not interfere with
the concentration of the subjects, and neither
the experimenter talked to the subject nor the
subject to the experimenter during the collec-
tion of the data—although exceptions to this
rule can certainly be found, especially in lin-
guistically oriented experiments.

The concept of empirical structures is just
meant to isolate the part of the experimental
activity and the form of the data relevant to
the hypothesis or theory being tested or to the
measurements being made.

Isomorphic Structures

The prehistory of mathematics, before
Babylonian, Chinese, or Egyptian civiliza-
tions began, left no written record but none-
theless had as a major development the con-
cept of number. In particular, counting of
small collections of objects was present. Oral
terms for some sort of counting seem to exist
in every language. The next big step was the
introduction, no doubt independently in sev-
eral places, of a written notation for numbers.
It was a feat of great abstraction to develop
the general theory of the constructive opera-
tions of counting, adding, subtracting, multi-
plying, and dividing numbers. The first prob-
lem for a theory of measurement was to show
how this arithmetic of numbers could be con-
structed and applied to a variety of empirical
structures.

To investigate this problem, as we do in
the next section, we need the general no-
tion of isomorphism between two structures.
The intuitive idea is straightforward: Two
structures are isomorphic when they exhibit
the same structure from the standpoint of
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their basic concepts. The point of the formal
definition of isomorphism is to make this no-
tion of same structure precise.

As an elementary example, consider a
binary relational structure consisting of a
nonempty set A and a binary relation R de-
fined on this set. We will be considering pairs
of such structures in which both may be empir-
ical structures, both may be numerical struc-
tures, or one may be empirical and the other
numerical. The definition of isomorphism is
unaffected by which combination is being
considered.

The way we make the concept of having
the same structure precise is to require the ex-
istence of a function mapping the one struc-
ture onto the other that preserves the binary
relation. Formally, a binary relation structure
(A, R) is isomorphic to a binary relation struc-
ture (A′, R′) if and only if there is a function
f such that

(i) the domain of f is A and the codomain
of f is A′, i.e., A′ is the image of A
under f,

(ii) f is a one-one function,1 and

(iii) for a and b in A, aRb iff2 f (a)R′ f (b).

To illustrate this definition of isomorph-
ism, consider the question: Are any two finite
binary relation structures with the same num-
ber of elements isomorphic? Intuitively, it
seems clear that the answer should be neg-
ative, because in one of the structures all the
objects could stand in the relation R to each
other and not so in the other. This is indeed
the case and shows at once, as intended, that
isomorphism depends not just on a one-one
function from one set to another, but also
on the structure as represented in the binary
relation.

1In recent years, conditions (i) and (ii) together have
come to be called bijective.
2This is a standard abbreviation for “if and only if.”

Ordered Relational Structures

Weak Order

An idea basic to measurement is that the ob-
jects being measured exhibit a qualitative at-
tribute for which it makes sense to ask the
question: Which of two objects exhibits more
of the attribute, or do they exhibit it to the same
degree? For example, the attribute of having
greater mass is reflected by placing the two
objects on the pans of an equal-arm pan bal-
ance and observing which deflects downward.
The attribute of loudness is reflected by which
of two sounds a subject deems as louder or
equally loud. Thus, the focus of measurement
is not just on the numerical representation of
any relational structures, but of ordered ones,
that is, ones for which one of the relations is a
weak order, denoted �∼, which has two defin-
ing properties for all elements a, b, c in the
domain A:

(i) Transitive: if a �∼ b and b �∼ c, then a �∼ c.

(ii) Connected: either a �∼ b or b �∼ a or both.

The intuitive idea is that �∼ captures the order-
ing of the attribute that we are attempting to
measure.

Two distinct relations can be defined in
terms of �∼:

a � b iff a �∼ b and not (b �∼ a);
a ∼ b iff both a �∼ b and b �∼ a.

It is an easy exercise to show that � is transi-
tive and irreflexive (i.e., a � a cannot hold),
and that ∼ is an equivalence relation (i.e.,
transitive, symmetric in the sense that a ∼ b
iff b ∼ a, and reflexive in the sense that
a ∼ a). The latter means that ∼ partitions A
into equivalence classes.

Homomorphism

For most measurement situations one really
is working with weak orders—after all, two
entities having the same weight are not in gen-
eral identical. But often it is mathematically
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easier to work with isomorphisms to the or-
dered real numbers, in which case one must
deal with the following concept of simple or-
ders. We do this by inducing the preference
order over the equivalence classes defined by
∼. When ∼ is =, each element is an equiva-
lence class, and the weak order 	 is called a
simple order. The mapping from the weakly
ordered structure via the isomorphisms of
the (mutually disjoint) equivalences classes
to the ordered real numbers is called a ho-
momorphism. Unlike an isomorphism, which
is one to one, an homomorphism is many to
one. In some cases, such as additive conjoint
measurement, discussed later, it is somewhat
difficult, although possible, to formulate the
theory using the equivalence classes.

Two Fundamental Problems
of Representational Measurement

Existence

The most fundamental problem for a theory of
representational measurement is to construct
the following representation: Given an empir-
ical structure satisfying certain properties, to
which numerical structures, if any, is it iso-
morphic? These numerical structures, thus,
represent the empirical one. It is the existence
of such isomorphisms that constitutes the
representational claim that measurement of
a fundamental kind has taken place.

Quantification or measurement, in the
sense just characterized, is important in some
way in all empirical sciences. The primary
significance of this fact is that given the iso-
morphism of structures, we may pass from the
particular empirical structure to the numerical
one and then use all our familiar computa-
tional methods, as applied to the isomorphic
arithmetical structure, to infer facts about the
isomorphic empirical structure. Such passage
from simple qualitative observations to quan-
titative ones—the isomorphism of structures

passing from the empirical to the numerical—
is necessary for precise prediction or control
of phenomena. Of course, such a representa-
tion is useful only to the extent of the precision
of the observations on which it is based. A va-
riety of numerical representations for various
empirical psychological phenomena is given
in the sections that follow.

Uniqueness

The second fundamental problem of repre-
sentational measurement is to discover the
uniqueness of the representations. Solving the
representation problem for a theory of mea-
surement is not enough. There is usually a
formal difference between the kind of assign-
ment of numbers arising from different pro-
cedures of measurement, as may be seen in
three intuitive examples:

1. The population of California is greater than
that of New York.

2. Mary is 10 years older than John.

3. The temperature in New York City this
afternoon will be 92 ◦F.

Here we may easily distinguish three kinds
of measurements. The first is an example of
counting, which is an absolute scale. The
number of members of a given collection that
is counted is determined uniquely in the ideal
case, although that can be difficult in prac-
tice (witness the 2000 presidential election
in Florida). In contrast, the second example,
the measurement of difference in age, is a
ratio scale. Empirical procedures for mea-
suring age do not determine the unit of age—
chosen in the example to be the year rather
than, for example, the month or the week.
Although the choice of the unit of a per-
son’s age is arbitrary—that is, not empiri-
cally prescribed—that of the zero, birth, is
not. Thus, the ratio of the ages of any two peo-
ple is independent of its choice, and the age
of people is an example of a ratio scale. The
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measurement of distance is another example
of such a ratio scale. The third example, that
of temperature, is an example of an interval
scale. The empirical procedure of measuring
temperature by use of a standard thermometer
or other device determines neither a unit nor
an origin.

We may thus also describe the second fun-
damental problem for representational mea-
surement as that of determining the scale type
of the measurements resulting from a given
procedure.

A BRIEF HISTORY
OF MEASUREMENT

Pre-19th-Century Measurement

Already by the fifth century B.C., if not before,
Greek geometers were investigating problems
central to the nature of measurement. The
Greek achievements in mathematics are all of
relevance to measurement. First, the theory of
number, meaning for them the theory of the
positive integers, was closely connected with
counting; second, the geometric theory of pro-
portion was central to magnitudes that we now
represent by rational numbers (= ratios of in-
tegers); and, finally, the theory of incommen-
surable geometric magnitudes for those mag-
nitudes that could not be represented by ratios.
The famous proof of the irrationality of the
square root of two seems arithmetic in spirit
to us, but almost certainly the Greek discov-
ery of incommensurability was geometric in
character, namely, that the length of the di-
agonal of a square, or the hypotenuse of an
isosceles right-angled triangle, was not com-
mensurable with the sides. The Greeks well
understood that the various kinds of results
just described applied in general to magni-
tudes and not in any sense only to numbers
or even only to the length of line segments.
The spirit of this may be seen in the first def-
inition of Book 10 of Euclid, the one dealing

with incommensurables: “Those magnitudes
are said to be commensurable which are mea-
sured by the same measure, and those incom-
mensurable which cannot have any common
measure” (trans. 1956, p. 10).

It does not take much investigation to de-
termine that theories and practices relevant to
measurement occur throughout the centuries
in many different contexts. It is impossible
to give details here, but we mention a few
salient examples. The first is the discussion
of the measurement of pleasure and pain in
Plato’s dialogue Protagoras. The second is
the set of partial qualitative axioms, character-
izing in our terms empirical structures, given
by Archimedes for measuring on unequal bal-
ances (Suppes, 1980). Here the two qualitative
concepts are the distance from the focal point
of the balance and the weights of the objects
placed in the two pans of the balance. This
is perhaps the first partial qualitative axiom-
atization of conjoint measurement, which is
discussed in more detail later. The third ex-
ample is the large medieval literature giving a
variety of qualitative axioms for the measure-
ment of weight (Moody and Claggett, 1952).
(Psychologists concerned about the difficulty
of clarifying the measurement of fundamen-
tal psychological quantities should be encour-
aged by reading O’Brien’s 1981 detailed ex-
position of the confused theories of weight in
the ancient world.) The fourth example is the
detailed discussion of intensive quantities by
Nicole Oresme in the 14th century A.D. The
fifth is Galileo’s successful geometrization in
the 17th century of the motion of heavenly
bodies, done in the context of stating essen-
tially qualitative axioms for what, in the ear-
lier tradition, would be called the quantity of
motion. The final example is also perhaps the
last great, magnificent, original treatise of nat-
ural science written wholly in the geometrical
tradition—Newton’s Principia of 1687. Even
in his famous three laws of motion, concepts
were formulated in a qualitative, geometrical
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way, characteristic of the later formulation of
qualitative axioms of measurement.

19th- and Early 20th-Century
Physical Measurement

The most important early 19th-century work
on measurement was the abstract theory of
extensive quantities published in 1844 by
H. Grassmann, Die Wissenschaft der Exten-
siven Grösse oder die Ausdehnungslehre. This
abstract and forbidding treatise, not properly
appreciated by mathematicians at the time
of its appearance, contained at this early
date the important generalization of the con-
cept of geometric extensive quantities to
n-dimensional vector spaces and, thus, to the
addition, for example, of n-dimensional vec-
tors. Grassmann also developed for the first
time a theory of barycentric coordinates in n
dimensions. It is now recognized that this was
the first general and abstract theory of exten-
sive quantities to be treated in a comprehen-
sive manner.

Extensive Measurement

Despite the precedent of the massive work
of Grassmann, it is fair to say that the mod-
ern theory of one-dimensional, extensive mea-
surement originated much later in the cen-
tury with the fundamental work of Helmholtz
(1887) and Hölder (1901). The two funda-
mental concepts of these first modern at-
tempts, and later ones as well, is a binary
operation ◦ of combination and an ordering
relation �∼, each of which has different inter-
pretations in different empirical structures.
For example, mass ordering �∼ is determined
by an equal-arm pan balance (in a vacuum)
with a◦b denoting objects a and b both placed
on one pan. Lengths of rods are ordered by
placing them side-by-side, adjusting one end
to agree, and determining which rod extends
beyond the other at the opposite end, and ◦
means abutting two rods along a straight line.

The ways in which the basic axioms can be
stated to describe the intertwining of these two
concepts has a long history of later develop-
ment. In every case, however, the fundamental
isomorphism condition is the following: For
a, b in the empirical domain,

f (a) ≥ f (b) ⇔ a �∼ b, (1)

f (a ◦ b) = f (a) + f (b), (2)

where f is the mapping function from the
empirical structure to the numerical structure
of the additive, positive real numbers, that is,
for all entities a, f (a) > 0.

Certain necessary empirical (testable)
properties must be satisfied for such a rep-
resentation to hold. Among them are for all
entities a, b, and c,

Commutativity: a ◦ b ∼ b ◦ a.

Associativity: (a ◦ b) ◦ c ∼ a ◦ (b ◦ c).
Monotonicity: a �∼ b ⇔ a ◦ c �∼ b ◦ c.
Positivity: a ◦ a � a.

Let a be any element. Define a standard
sequence based on a to be a sequence a(n),

where n is an integer, such that a(1) = a,
and for i > 1, a(i) ∼ a(i – 1) ◦ a. An example
of such a standard sequence is the centimeter
marks on a meter ruler. The idea is that the
elements of a standard sequence are equally
spaced. The following (not directly testable)
condition ensures that the stimuli are com-
mensurable:

Archimedean: For any entities a, b,

there is an integer n such that a(n) � b.

These, together with the following struc-
tural condition that ensures very small ele-
ments,

Solvability: if a � b,

then for some c, a � b ◦ c,

were shown to imply the existence of the rep-
resentation given by Equations (1) and (2).
By formulating the Archimedean axiom dif-
ferently, Roberts and Luce (1968) showed that
the solvability axiom could be eliminated.
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Such empirical structures are called exten-
sive. The uniqueness of their representations
is discussed shortly.

Probability and Partial Operations

It is well known that probability P is an addi-
tive measure in the sense that it maps events
into [0, 1] such that, for events A and B that
are disjoint,

P(A ∪ B) = P(A) + P(B).

Thus, probability is close to extensive mea-
surement—but not quite, because the opera-
tion is limited to only disjoint events. How-
ever, the theory of extensive measurement can
be generalized to partial operations having the
property that if a and b are such that a ◦ b is
defined and if a �∼ c and b �∼ d, then c ◦ d is
also defined. With some adaptation, this can
be applied to probability; the details can be
found in Chapter 3 of Krantz, Luce, Suppes,
and Tversky (1971). (This reference is subse-
quently cited as FM I for Volume I of Foun-
dations of Measurement. The other volumes
are Suppes, Krantz, Luce, & Tversky, 1990,
cited as FM II, and Luce, Krantz, Suppes, &
Tversky, 1990, cited as FM III.)

Finite Partial Extensive Structures

Continuing with the theme of partial opera-
tion, we describe a recent treatment of a finite
extensive structure that also has ratio scale
representation and that is fully in the spirit of
the earlier work involving continuous models.
Suppose X is a finite set of physical objects,
any two of which balance on an equal-arm
balance; that is, if a1, . . . , an are the objects,
for any i and j, i �= j, then ai ∼ a j . Thus, they
weigh the same. Moreover, if A and B are two
sets of these objects, then on the balance we
have A ∼ B if and only if A and B have the
same number of objects. We also have a con-
catenation operation, union of disjoint sets. If
A ∩ B = ∅, then A ∪ B ∼ C if and only if
the objects in C balance the objects in A

together with the objects in B. The qualitative
strict ordering A � B has an obvious opera-
tional meaning, which is that the objects in
A, taken together, weigh more on the balance
than the objects in B, taken together.

This simple setup is adequate to establish,
by fundamental measurement, a scheme for
numerically weighing other objects not in X.
First, our homomorphism f on X is really
simple. Since for all ai and a j and X, ai∼ a j ,

we have

f (ai ) = f (a j ),

with the restriction that f (ai ) > 0. We extend
f to A, a subset of X, by setting f (A) = |A| =
the cardinality of (number of objects in) A.
The extensive structure is thus transparent:
For A and B subsets of X, if A ∩ B = ∅ then

f (A ∪ B) = |A ∪ B| = |A| + |B|
= f (A) + f (B).

If we multiply f by any α > 0 the equation
still holds, as does the ordering. Moreover,
in simple finite cases of extensive measure-
ment such as the present, it is easy to prove di-
rectly that no transformations other than ratio
transformations are possible. Let f ∗ denote
another representation. For some object a, set
α = f (a)/ f ∗(a). Observe that if |A| = n, then
by a finite induction

f (A)

f ∗(A)
= n f (a)

n f ∗(a)
= α,

so the representation forms a ratio scale.

Finite Probability

The “objects” a1, . . . , an are now interpreted
as possible outcomes of a probabilistic mea-
surement experiment, so the ai s are the possi-
ble atomic events whose qualitative probabil-
ity is to be judged.

The ordering A �∼ B is interpreted as mean-
ing that event A is at least as probable as event
B; A ∼ B as A and B are equally probable;
A � B as A is strictly more probable than B.
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Then we would like to interpret f (A) as the
numerical probability of event A, but if f is
unique up to only a ratio scale, this will not
work since f (A) could be 50.1, not exactly a
probability.

By adding another concept, that of the
probabilistic independence of two events, we
can strengthen the uniqueness result to that
of an absolute scale. This is written A ⊥ B.
Given a probability measure, the definition of
independence is familiar: A ⊥ B if and only if
P(A ∩ B) = P(A)P(B). Independence can-
not be defined in terms of the qualitative con-
cepts introduced for arbitrary finite qualitative
probability structures, but can be defined by
extending the structure to elementary random
variables (Suppes and Alechina, 1994). How-
ever, a definition can be given for the spe-
cial case in which all atoms are equiproba-
ble; it again uses the cardinality of the sets:
A ⊥ B if and only if |X | · |A ∩ B| = |A| · |B|.
It immediately follows from this definition
that X ⊥ X , whence in the interpretation of
⊥ we must have

P(X) = P(X ∩ X) = P(X)P(X),

but this equation is satisfied only if P(X) = 0,
which is impossible since P(∅) = 0 and
X � ∅, or P(X) = 1, which means that the
scale type is an absolute—not a ratio—scale,
as it should be for probability.

Units and Dimensions

An important aspect of 19th century physics
was the development, starting with Fourier’s
work (1822/1955), of an explicit theory of
units and dimensions. This is so common-
place now in physics that it is hard to be-
lieve that it only really began at such a late
date. In Fourier’s famous work, devoted to
the theory of heat, he announced that in or-
der to measure physical quantities and express
them numerically, five different kinds of units
of measurement were needed, namely, those
of length, time, mass, temperature, and heat.

Of even greater importance is the specific
table he gave, for perhaps the first time in the
history of physics, of the dimensions of vari-
ous physical quantities. A modern version of
such a table appears at the end of FM I.

The importance of this tradition of units
and dimensions in the 19th century is to be
seen in Maxwell’s famous treatise on electric-
ity and magnetism (1873). As a preliminary,
he began with 26 numbered paragraphs on
the measurement of quantities because of the
importance he attached to problems of mea-
surement in electricity and magnetism, a topic
that was virtually unknown before the 19th
century. Maxwell emphasized the fundamen-
tal character of the three fundamental units
of length, time, and mass. He then went on
to derive units, and by this he meant quanti-
ties whose dimensions may be expressed in
terms of fundamental units (e.g., kinetic en-
ergy, whose dimension in the usual notation is
M L2T –2). Dimensional analysis, first put in
systematic form by Fourier, is very useful in
analyzing the consistency of the use of quan-
tities in equations and can also be used for
wider purposes, which are discussed in some
detail in FM I.

Derived Measurement

In the Fourier and Maxwell analyses, the ques-
tion of how a derived quantity is actually to be
measured does not enter into the discussion.
What is important is its dimensions in terms of
fundamental units. Early in the 20th century
the physicist Norman Campbell (1920/1957)
used the distinction between fundamental and
derived measurement in a sense more intrinsic
to the theory of measurement itself. The dis-
tinction is the following: Fundamental mea-
surement starts with qualitative statements
(axioms) about empirical structures, such as
those given earlier for an extensive structure,
and then proves the existence of a representa-
tional theorem in terms of numbers, whence
the phrase “representational measurement.”
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In contrast, a derived quantity is measured in
terms of other fundamental measurements. A
classical example is density, measured as the
ratio of separate measurements of mass and
volume. It is to be emphasized, of course, that
calling density a derived measure with respect
to mass and volume does not make a funda-
mental scientific claim. For example, it does
not allege that fundamental measurement of
density is impossible. Nevertheless, in under-
standing the foundations of measurement, it
is always important to distinguish whether
fundamental or derived measurement, in
Campbell’s sense, is being analyzed or used.

Axiomatic Geometry

From the standpoint of representational mea-
surement theory, another development of
great importance in the 19th century was the
perfection of the axiomatic method in geom-
etry, which grew out of the intense scrutiny
of the foundations of geometry at the be-
ginning of that century. The driving force
behind this effort was undoubtedly the dis-
covery and development of non-Euclidean ge-
ometries at the beginning of the century by
Bolyai, Lobachevski, and Gauss. An impor-
tant and intuitive example, later in the cen-
tury, was Pasch’s (1882) discovery of the ax-
iom named in his honor. He found a gap in
Euclid that required a new axiom, namely, the
assertion that if a line intersects one side of a
triangle, it must intersect also a second side.
More generally, it was the high level of rigor
and abstraction of Pasch’s 1882 book that was
the most important step leading to the mod-
ern formal axiomatic conception of geometry,
which has been so much a model for repre-
sentational measurement theory in the 20th
century. The most influential work in this line
of development was Hilbert’s Grundlagen der
Geometrie, first edition in 1899, much of its
prominence resulting from Hilbert’s position
as one of the outstanding mathematicians of
this period.

It should be added that even in one-
dimensional geometry numerical representa-
tions arise even though there is no order
relation. Indeed, for dimensions ≥2, no stan-
dard geometry has a weak order. Moreover, in
geometry the continuum is not important for
the fundamental Galilean and Lorentz groups.
An underlying denumerable field of algebraic
numbers is quite adequate.

Invariance

Another important development at the end
of the 19th century was the creation of the
explicit theory of invariance for spatial prop-
erties. The intuitive idea is that the spatial
properties in analytical representations are in-
variant under the transformations that carry
one model of the axioms into another model
of the axioms. Thus, for example, the ordi-
nary Cartesian representation of Euclidean
geometry is such that the geometrical prop-
erties of the Euclidean space are invariant un-
der the Euclidean group of transformations
of the Cartesian representation. These are the
transformations that are composed from trans-
lations (in any direction), rotations, and re-
flections. These ideas were made particularly
prominent by the mathematician Felix Klein
in his Erlangen address of 1872 (see Klein,
1893). These important concepts of invariance
had a major impact in the development of the
theory of special relativity by Einstein at the
beginning of the 20th century. Here the invari-
ance is that under the Lorentz transformations,
which are those that leave invariant geomet-
rical and kinematic properties of the space-
time of special relativity. Without giving the
full details of the Lorentz transformations, it is
still possible to give a clear physical sense of
the change from classical Newtonian physics
to that of special relativity.

In the case of classical Newtonian me-
chanics, the invariance that characterizes the
Galilean transformations is just the invariance
of the distance between any two simultaneous
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points together with the invariance of any tem-
poral interval, under any permissible change
of coordinates. Note that this characterization
requires that the units of measurement for both
spatial distance and time be held constant. In
the case of special relativity, the single in-
variant is what is called the proper time τ12

between two space-time points (x1, y1, z1, t1)
and (x2, y2, z2, t2), which is defined as

τ12 =√
(t1 − t2)2 − 1

c2

[
(x1 − x2)

2 + (y1 − y2)
2 + (z1 − z2)

2
]
,

where c is the velocity of light in the given
units of measurement. It is easy to see the
conceptual nature of the change. In the case
of classical mechanics, the invariance of spa-
tial distance between simultaneous points is
separate from the invariance of temporal in-
tervals. In the case of special relativity, they
are intertwined. Thus, we properly speak of
space-time invariance in the case of special
relativity. As will be seen in what follows,
the concepts of invariance developed so thor-
oughly in the 19th and early 20th century in
geometry and physics have carried over and
are an important part of the representational
theory of measurement.

Quantum Theory and the Problem
of Measurement

Still another important development in the
first half of the 20th century, of special rel-
evance to the topic of this chapter, was the
creation of quantum mechanics and, in par-
ticular, the extended analysis of the problem
of measurement in that theory. In contrast with
the long tradition of measurement in classical
physics, at least three new problems arose that
generated what in the literature is termed the
problem of measurement in quantum mechan-
ics. The first difficulty arises in measuring mi-
croscopic objects, that is, objects as small as
atoms or electrons or other particles of a
similar nature. The very attempt to measure a

property of these particles creates a distur-
bance in the state of the particle, a disturbance
that is not small relative to the particle itself.
Classical physics assumed that, in principle,
such minor disturbances of a measured ob-
ject as did occur could either be eliminated or
taken into account in a relatively simple way.

The second aspect is the precise limitation
on such measurement, which was formulated
by Heisenberg’s uncertainty principle. For ex-
ample, it is not possible to measure both posi-
tion and momentum exactly. Indeed, it is not
possible, in general, to have a joint probability
distribution of the measurements of the two.
This applies not just to position and momen-
tum, but also to other pairs of properties of a
particle. The best that can be hoped for is the
Heisenberg uncertainty relation. It expresses
an inequality that bounds away from zero the
product of the variances of the two proper-
ties measured, for example, the product of the
variance of the measurement of position and
the variance of the measurement of velocity
or momentum. This inequality appeared really
for the first time in quantum mechanics and is
one of the principles that separates quantum
mechanics drastically from classical physics.
An accessible and clear exposition of these
ideas is Heisenberg (1930), a work that few
others have excelled for the quality of its
exposition.

The third aspect of measurement in quan-
tum mechanics is the disparity between the
object being measured and the relatively large,
macroscopic object used for the measure-
ment. Here, a long and elaborate story can be
told, as it is, for example, in von Neumann’s
classical book on the foundations of quan-
tum mechanics, which includes a detailed
treatment of the measurement problem
(von Neumann, 1932/1955). The critical as-
pect of this problem is deciding when a mea-
surement has taken place. Von Neumann was
inclined to the view that a measurement had
taken place only when a relevant event had
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occurred in the consciousness of some ob-
server. More moderate subsequent views are
satisfied with the position that an observation
takes place when a suitable recording has been
made by a calibrated instrument.

Although we shall not discuss further the
problem of measurement in quantum mechan-
ics, nor even the application of the ideas to
measurement in psychology, it is apparent that
there is some resonance between the difficul-
ties mentioned and the difficulties of measur-
ing many psychological properties.

19th- and Early 20th-Century Psychology

Fechner’s Psychophysics

Psychology was not a separate discipline until
the late 19th century. Its roots were largely in
philosophy with significant additions by med-
ical and physical scientists. The latter brought
a background of successful physical measure-
ment, which they sought to re-create in sen-
sory psychology at the least. The most promi-
nent of these were H. Helmholtz, whose work
among other things set the stage for extensive
measurement, and G. T. Fechner, whose
Elemente der Psychophysik (Elements of
Psychophysics; 1860/1966) set the stage for
subsequent developments in psychological
measurement. We outline the problem faced
in trying to transplant physical measurement
and the nature of the proposed solution.

Recall that the main measurement device
used in 19th-century physics was concatena-
tion: Given two entities that exhibit the at-
tribute to be measured, it was essential to find
a method of concatenating them to form a third
entity also exhibiting the attribute. Then one
showed empirically that the structure satisfies
the axioms of extensive measurement, as dis-
cussed earlier. When no empirical concatena-
tion operation can be found, as for example
with density, one could not do fundamental
measurement. Rather, one sought an invari-
ant property stated in terms of fundamentally

measured quantities called derived measure-
ment. Density is an example.

When dealing with sensory intensity, phys-
ical concatenation is available but just recov-
ers the physical measure, which does not at
all well correspond with subjective judgments
such as the half loudness of a tone. A new
approach was required. Fechner continued to
accept the idea of building up a measure-
ment scale by adding small increments, as
in the standard sequences of extensive mea-
surement, and then counting the number of
such increments needed to fill a sensory in-
terval. The question was: What are the small
equal increments to be added? His idea was
that they correspond to “just noticeable dif-
ferences” (JND); when one first encounters
the idea of a JND it seems to suggest a fixed
threshold, but it gradually was interpreted to
be defined statistically. To be specific, sup-
pose x0 and x1 = x0 + ξ(x0, λ) are stimulus
intensities such that the probability of identi-
fying x1 as larger than x0 is a constant λ, that
is, Pr(x0, x1) = λ. His idea was to fix λ and to
measure the distance from x to y, x < y, in
terms of the number of successive JNDs be-
tween them. Defining x0 = x and assuming
that xi has been defined, then define xi+1 as

xi+1 = xi + ξ(xi , λ).

The sequence ends with xn ≤ y < xn+1.
Fechner postulated the number of JNDs from
x to y as his definition of distance without,
however, establishing any empirical proper-
ties of justify that definition. Put another way,
he treated without proof that a sequence of
JNDs forms a standard sequence.

His next step was to draw on an empirical
result of E. H. Weber to the effect that

ξ(x, λ) = δ(λ)x, δ(λ) > 0,

which is called Weber’s law. This is some-
times approximately true (e.g., for loudness
of white noise well above absolute threshold),
but more often it is not (e.g., for pure tones).
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His final step was to introduce, much as
in extensive measurement, a limiting process
as λ approaches 1

2 and δ approaches 0. He
called this an auxiliary mathematical prin-
ciple, which amounts to supposing without
proof that a limit below exists. If we denote
by ψ the counting function, then his assump-
tion that, for fixed λ, the JNDs are equally dis-
tant can be interpreted to mean that for some
function η of λ

η(λ) = ψ[x + ξ(x, λ)] − ψ(x)

= ψ([δ(λ) + 1]x) − ψ(x).

Therefore, dividing by δ(λ)x

ψ([δ(λ) + 1]x) − ψ(x)

δ(λ)x
= η(λ)

δ(λ)x
= α(λ)

x
,

where α(λ) = η(λ)

δ(λ)
.

Assuming that the limit of α(λ) exists, one
has the simple ordinary differential equation

dψ(x)

dx
= k

x
, k = lim

λ→ 1
2

α(λ),

whose solution is well known to be

ψ(x) = r ln x + s, r > 0.

This conclusion, known as Fechner’s law,
was soon questioned by J. A. F. Plateau
(1872), among others, although the emprical
evidence was not conclusive. Later, Wiener
(1915, 1921) was highly critical, and much
later Luce and Edwards (1958) pointed out
that, in fact, Fechner’s mathematical auxil-
iary principle, although leading to the correct
solution of the functional equation η(λ) =
ψ[x + ξ(x, λ)] − ψ(x) when Weber’s law
holds, fails to discover the correct solution
in any other case—which empirically really
is the norm. The mathematics is simply more
subtle than he assumed.

In any event, note that Fechner’s approach
is not an example of representational mea-
surement, because no empirical justification
was provided for the definition of standard
sequence used.

Reinterpreting Fechner Geometrically

Because Fechner’s JND approach using in-
finitesimals seemed to be flawed, little was
done for nearly half a century to construct
psychophysical functions based on JNDs—
that is, until Dzhafarov and Colonius (1999,
2001) reexamined what Fechner might have
meant. They did this from a viewpoint of
distances in a possible representation called
a Finsler geometry, of which ordinary Rie-
mannian geometry is a special case. Thus,
their theory concerns stimuli of any finite di-
mension, not just one. The stimuli are vec-
tors, for which we use bold-faced notation.
The key idea, in our notation, is that for each
person there is a universal function � such
that, for λ sufficiently close to 1

2 , �(ψ[x +
ξ(x, λ)] − ψ(x)) is comeasurable3 with x.
This assumption means that this transformed
differential can be integrated along any suffi-
ciently smooth path between any two points.
The minimum path length is defined to be
the Fechnerian distance between them. This
theory, which is mathematically quite elab-
orate, is testable in principle. But doing so
certainly will not be easy because its assump-
tions, which are about the behavior of in-
finitesimals, are inherently difficult to check
with fallible data. It remains to be seen how
far this can be taken.

Ability and Achievement Testing

The vast majority of what is commonly called
“psychological measurement” consists of var-
ious elaborations of ability and achievement
testing that are usually grouped under the la-
bel “psychometrics.” We do not cover any of
this material because it definitely is neither
a branch of nor a precursor to the representa-
tional measurement of an attribute. To be sure,
a form of counting is employed, namely, the

3For the precise definition, see the reference.



pashler-44093 book December 18, 2001 10:10

A Brief History of Measurement 13

items on a test that are correctly answered, and
this number is statistically normed over a par-
ticular age or other feature so that the count is
transformed into a normal distribution. Again,
no axioms were or are provided. Of the psy-
chometric approaches, we speak only of a por-
tion of Thurstone’s work that is closely related
to sensory measurement. Recently, Doignon
and Falmagne (1999) have developed an ap-
proach to ability measurement, called knowl-
edge spaces, that is influenced by representa-
tional measurement considerations.

Thurstone’s Discriminal Dispersions

In a series of three 1927 papers, L. L.
Thurstone began a reinterpretation of
Fechner’s approach in terms of the then newly
developed statistical concept of a random vari-
able (see also Thurstone, 1959). In particu-
lar, he assumed that there was an underlying
psychological continuum on which signal pre-
sentations are represented, but with variabil-
ity. Thus, he interpreted the representation of
stimulus x as a random variable �(x) with
some distribution that he cautiously assumed
(see Thurstone, 1927b, p. 373) to be normal
with mean ψx and standard deviation (which
he called a “discriminal dispersion”) σx and
possibly covariances with other stimulus rep-
resentations. Later work gave reasons to con-
sider extreme value distributions rather than
the normal. His basic model for the probabil-
ity of stimulus y being judged larger than x
was

P(x, y) = Pr[�(y) − �(x) > 0], x ≤ y.

(3)

The relation to Fechner’s ideas is really quite
close in that the mean subjective differences
are equal for fixed λ = P(x, y).

Given that the representations are assumed
to be normal, the difference is also normal
with mean ψy – ψx and standard deviation

σx,y = (
σ 2

x + σ 2
y − 2ρx,yσxσy

)1/2

so if zx,y is the normal deviate correspond-
ing to P(x, y), Equation (3) can be expressed
as

ψy − ψx = zx,yσx,y .

Thurstone dubbed this “a law of comparative
judgment.” Many papers before circa 1975
considered various modifications of the as-
sumptions or focused on solving this equation
for various special cases. We do not go into
this here in part because the power of mod-
ern computers reduces the need for specia-
lization.

Thurstone’s approach had a natural one-
dimensional generalization to the absolute
identification of one of n > 2 possible stimuli.
The theory assumes that each stimulus has a
distribution on the sensory continuum and that
the subject establishes n − 1 cut points to de-
fine the intervals of the range of the random
variable that are identified with the stimuli.
The basic data are conditional probabilities
P(x j |xi , n) of responding x j when xi , i, j =
1, 2, . . . , n, is presented. Perhaps the most
striking feature of such data is the follow-
ing: Suppose a series of signals are selected
such that adjacent pairs are equally detectable.
Using a sequence of n adjacent ones, abso-
lute identification data are processed through
a Thurstone model in which ψx,n and σx,n are
both estimated. Accepting that ψx,n are in-
dependent of n, then the σx,n definitely are
not independent of n. In fact, once n reaches
about 7, the value is independent of size, but
σx,7 ≈ 3σx,2. This is a challenging finding and
certainly casts doubt on any simple invari-
ant meaning of the random variable �(x)—
apparently its distribution depends not only
on x but on what might have been presented
as well. Various authors have proposed alter-
native solutions (for a summary, see Iverson
& Luce, 1998).

A sophisticated treatment of Fechner,
Thurstone, and the subsequent literature is
provided by Falmagne (1985).
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Theory of Signal Detectability

Perhaps the most important generalization of
Thurstone’s idea is that of the theory of sig-
nal detectability, in which the basic change is
to assume that the experimental subject can
establish a response criterion β, in general
different from 0, so that

P(x, y) = Pr[�(y) − �(x) > β], x ≤ y.

Engineers first developed this model. It was
adoped and elaborated in various psycho-
logical sources, including Green and Swets
(1974) and Macmillan and Creelman (1991),
and it has been widely applied throughout
psychology.

Mid-20th-Century Psychological
Measurement

Campbell’s Objection
to Psychological Measurement

N. R. Campbell, a physicist turned philoso-
pher of physics who was especially concerned
with physical measurement, took the very
strong position that psychologists, in partic-
ular, and social scientists, in general, had not
come up with anything deserving the name of
measurement and probably never could. He
was supported by a number of other British
physicists. His argument, though somewhat
elaborate, actually boiled down to asserting
the truth of three simple propositions:

(i) A prerequisite of measurement is some
form of empirical quantification that can
be accepted or rejected experimentally.

(ii) The only known form of such quantifi-
cation arises from binary operations of
concatenation that can be shown empir-
ically to satisfy the axioms of extensive
measurement.

(iii) And psychology has no such extensive
operations of its own.

Some appropriate references are Campbell
(1920/1957, 1928) and Ferguson et al. (1940).

Stevens’s Response

In a prolonged debate conducted before a
subcommittee of the British Association for
the Advancement of Sciences, the physicists
agreed on these propositions and the psychol-
ogists did not, at least not fully. They accepted
(iii) but in some measure denied (i) and (ii),
although, of course, they admitted that both
held for physics. The psychophysicist S. S.
Stevens became the primary spokesperson for
the psychological community. He first formu-
lated his views in 1946, but his 1951 chapter
in the first version of the Handbook of Exper-
imental Psychology, of which he was editor,
made his views widely known to the psycho-
logical community. They were complex, and
at the moment we focus only on the part rele-
vant to the issue of whether measurement can
be justified outside physics.

Stevens’ contention was that Proposition
(i) is too narrow a concept of measurement,
so (ii) and therefore (iii) are irrelevant. Rather,
he argued for the claim that “Measurement is
the assignment of numbers to objects or events
according to rule. . . . The rule of assignment
can be any consistent rule” (Stevens, 1975,
pp. 46–47). The issue was whether the rule
was sufficient to lead to one of several scale
types that he dubbed nominal, ordinal, inter-
val, ratio, and absolute. These are sufficiently
well known to psychologists that we need not
describe them in much detail. They concern
the uniqueness of numerical representations.
In the nominal case, of which the assignment
of numbers to football players was his exam-
ple, any permutation is permitted. This is not
generally treated as measurement because no
ordering by an attribute is involved. An or-
dinal scale is an assignment that can be sub-
jected to any strictly increasing transforma-
tion, which of course preserves the order and
nothing else. It is a representation with infinite
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degrees of freedom. An interval scale is one in
which there is an arbitrary zero and unit; but
once picked, no degrees of freedom are left.
Therefore, the admissible transformation is
ψ �−→ rψ +s, (r > 0). As stated, such a rep-
resentation has to be on all of the real numbers.
If, as is often the case, especially in physics,
one wants to place the representation on the
positive real numbers, then the transforma-
tion becomes ψ+ �−→ s ′ψr

+, (r > 0, s ′ > 0).
Stevens (1959, pp. 31–34) called a represen-
tation unique up to power transformations a
log-interval scale but did not seem to recog-
nize that it is merely a different way of writ-
ing an interval scale representation ψ in which
ψ = ln ψ+ and s = ln s ′. Whichever one uses,
it has two degrees of freedom. The ratio case
is the interval one with r = 1. Again, this
has two forms depending on the range of ψ .
For the case of a representation on the
reals, the admissible transformations are the
translations ψ �−→ ψ + s. There is a differ-
ent version of ratio measurement that is inher-
ently on the reals in the sense that it cannot
be placed on the positive reals. In this case,
0 is a true zero that divides the representa-
tion into inherently positive and negative por-
tions, and the admissible transformations are
ψ �−→ rψ, r > 0.

Stevens took the stance that what was im-
portant in measurement was its uniqueness
properties and that they could come about
in ways different from that of physics. The
remaining part of his career, which is sum-
marized in Stevens (1975), entailed the de-
velopment of new methods of measurement
that can all be encompassed as a form of sen-
sory matching. The basic instruction to sub-
jects was to require the match of a stimu-
lus in one modality to that in another so that
the subjective ratio between a pair of stim-
uli in the one dimension is maintained in the
subjective ratio of the matched signals. This
is called cross-modal matching. When one
of the modalities is the real numbers, it is

one of two forms of magnitude matching—
magnitude estimation when numbers are to be
matched to a sensory stimuli and magnitude
production when numbers are the stimuli to be
matched by some physical stimuli. Using geo-
metric means over subjects, he found the data
to be quite orderly—power functions of the
usual physical measures of intensity. Much of
this work is covered in Stevens (1975).

His argument that this constituted a form
of ratio scale measurement can be viewed in
two distinct ways. The least charitable is that
of Michell (1999), who treats it as little more
than a play on the word “ratio” in the scale
type and in the instructions to the subjects. He
feels that Stevens failed to understand the need
for empirical conditions to justify numerical
representations. Narens (1996) took the view
that Stevens’ idea is worth trying to formal-
ize and in the process making it empirically
testable. Work along these lines continues, as
discussed later.

REPRESENTATIONAL APPROACH
AFTER 1950

Aside from extensive measurement, the repre-
sentational theory of measurement is largely
a creation by behavioral scientists and math-
ematicians during the second half of the
20th century. The basic thrust of this school
of thought can be summarized as accept-
ing Campbell’s conditions (i), quantification
based on empirical properties, and (iii), the
social sciences do not have concatenation op-
erations (although even that was never strictly
correct, as is shown later, because of probabil-
ity based on a partial operation), and rejecting
the claim (ii) that the only form of quantifica-
tion is an empirical concatenation operation.
This school disagreed with Stevens’ broaden-
ing of (i) to any rule, holding with the physi-
cists that the rules had to be established on
firm empirical grounds.
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To do this, one had to establish the exis-
tence of schemes of empirically based mea-
surement that were different from extensive
measurement. Examples are provided here.
For greater detail, see FM I, II, III, Narens
(1985), or for an earlier perspective Pfanzagl
(1968).

Several Alternatives
to Extensive Measurement

Utility Theory

The first evidence of something different from
extensive measurement was the construction
by von Neumann and Morgenstern (1947) of
an axiomatization of expected utility theory.
Here, the stimuli were gambles of the form
(x, p; y) where consequence x occurs with
probability p and y with probability 1 – p. The
basic primitive of the system was a weak pref-
erence order �∼ over the binary gambles. They
stated properties that seemed to be at least
rational, if not necessarily descriptive; from
them one was able to show the existence of a
numerical utility function U over the conse-
quences and gambles such that for two binary
gambles g, h

g �∼ h ⇔ U (g) ≥ U (h),

U (g, p; h) = U (g)p + U (h)(1 − p).

Note that this is an averaging representation,
called expected utility, which is quite distinct
from the adding of extensive measurement
(see the subsection on averaging).

Actually, their theory has to be viewed as a
form of derived measurement in Campbell’s
sense because the construction of the U func-
tion was in terms of the numerical probabil-
ities built into the stimuli themselves. That
limitation was overcome by Savage (1954),
who modeled decision making under uncer-
tainty as acts that are treated as an assignment

of consequences to chance states of nature.4

Savage assumed that each act had a finite num-
ber of consequences, but subsequent gener-
alizations permitted infinitely many. Without
building any numbers into the domain and us-
ing assumptions defended by arguments of
rationality, he showed that one can construct
both a utility function U and a subjective prob-
ability function S such that acts are evaluated
by calculating the expectation of U with re-
spect to the measure S. This representation
is called subjective expected utility (SEU).
It is a case of fundamental measurement in
Campbell’s sense. Indirectly, it involved a
partial concatenation operation of disjoint
unions, which was used to construct a sub-
jective probability function.

These developments led to a very ac-
tive research program involving psycholo-
gists, economists, and statisticians. The basic
thrust has been of psychologists devising
experiments that cast doubt on either a repre-
sentation or some of its axioms, and of
theorists of all stripes modifying the theory
of accommodate the data. Among the key
summary references are Edwards (1992),
Fishburn (1970, 1988), Luce (2000), Quiggin
(1993), and Wakker (1989).

Difference Measurement

The simplest example of difference measure-
ment is location along a line. Here, some point
is arbitrarily set to be 0, and other points are
defined in terms of distance (length) from it,
with those on one side defined to be positive
and those on the other side negative. It is clear
in this case that location measurement forms
an example of interval scale measurement

4Some aspects of Savage’s approach were anticipated by
Ramsey (1931), but that paper was not widely known
to psychologists and economists. Almost simultane-
ously with the appearance of Savage’s work, Davidson,
McKinsey, and Suppes (1955) drew on Ramsey’s ap-
proach, and Davidson, Suppes, and Segal (1957) tested it
experimentally.
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that is readily reduced to length measurement.
Indeed, all forms of difference measurement
are very closely related to extensive measure-
ment, but with the stimuli being pairs of ele-
ments (x, y) that define “intervals.” Axioms
can be given for this form of measurement
where the stimuli are pairs (x, y) with both
x, y in the same set X. The goal is a numerical
representation ϕ of the form

(x, y) �∼ (u, v)

⇔ ϕ(x) − ϕ(y) ≥ ϕ(u) − ϕ(v).

One key axiom that makes clear how a con-
catenation operation arises is that if (x, y) �∼
(x ′, y′) and (y, z) �∼ (y′, z′), then (x, z) �∼
(x ′, z′).

An important modification is called abso-
lute difference measurement, in which the goal
is changed to

(x, y) �∼ (u, v)

⇔ |ϕ(x) − ϕ(y)| ≥ |ϕ(u) − ϕ(v)|.
This form of measurement is a precursor
to various ideas of similarity measurement
important in multidimensional scaling. Here
the behavioral axioms become considerably
more complex. Both systems can be found in
FM I, Chap. 4.

An important generalization of absolute
difference measurement is to stimuli with n
factors; it underlies developments of geomet-
ric measurement based on stimulus proximity.
This can be found in FM II, Chap. 14.

Additive Conjoint Measurement

Perhaps the single development that most
persuaded psychologists that fundamental
measurement really could be different from
extensive measurement consisted of two ver-
sions of what is called additive conjoint mea-
surement. The first, by Debreu (1960), was
aimed at showing economists how indiffer-
ence curves could be used to construct car-
dinal (interval scale) utility functions. It was,

therefore, naturally cast in topological terms.
The second (and independent) one by Luce
and Tukey (1964) was cast in algebraic terms,
which seems more natural to psychologists
and has been shown to include the topologi-
cal approach as a special case. Again, it was
an explanation of the conditions under which
equal-attribute curves can give rise to mea-
surement. Michell (1990) provides a careful
treatment aimed at psychologists.

The basic idea is this: Suppose that an at-
tribute is affected by two independent stim-
ulus variables. For example, preference for a
reward is affected by its size and the delay
in receiving it; mass of an object is affected
by both its volume and the (homogeneous)
material of which it is composed; loudness
of pure tones is affected by intensity and fre-
quency; and so on. Formally, one can think
of the two factors as distinct sets A and X,
so an entity is of the form (a, x) where
a ∈ A and x ∈ X. The ordering attribute is
�∼ over such entities, that is, over the Cartesian
product A × X. Thus, (a, x) �∼ (b, y) means
that (a, x) exhibits more of the attribute in
question than does (b, y). Again, the order-
ing is assumed to be a weak order: transitive
and connected. Monotonicity (called indepen-
dence in this literature) is also assumed: For
a, b ∈ A, x, y ∈ X

(a, x) �∼ (b, x) ⇔ (a, y) �∼ (b, y).

(a, x) �∼ (a, y) ⇔ (b, x) �∼ (b, y).
(4)

This familiar property is often examined in
psychological research in which a dependent
variable is plotted against, say, a measure of
the first component with the second compo-
nent shown as a parameter of the curves. The
property holds if and only if the curves do not
cross.

It is easy to show that this condition is
not sufficient to get an additive representa-
tion of the two factors. If it were, then any set
of nonintersecting curves in the plane could
be rendered parallel straight lines by suitable
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nonlinear transformations of the axes. More
is required, namely, the Thomsen condition,
which arose in a mathematically closely
related area called the theory of webs. Let-
ting ∼ denote the indifference relation of �∼,

the Thomsen condition states

(a, z) ∼ (c, y)

(c, x) ∼ (b, z)

}
⇒ (a, x) ∼ (b, y).

Note that it is a form of cancellation—of c in
the first factor and z in the second.

These, together with an Archimedean
property establishing commensurability and
some form of density of the factors, are
enough to establish the following additive
representation: There exist numerical func-
tions ψA on A and ψX on X such that

(a, x) �∼ (b, y)

⇔ ψA(a) + ψX (x) ≥ ψA(b) + ψX (y).

This representation is on all of the real num-
bers. A multiplicative version on the positive
real numbers exists by setting ξi = exp ψi .
The additive representation forms an inter-
val scale in the sense that ψ ′

A, ψ ′
X forms

another equally good representation if and
only if there are constants r > 0, sA, sX such
that

ψ ′
A = rψA + sA,

ψ ′
X = rψX + sX ⇔ ξ ′

A = s ′
Aξ r

A, ξ ′
X = s ′

Xξ r
X ,

s ′
i = exp si > 0.

Additive conjoint measurement can be
generalized to finitely many factors, and it is
simpler in the sense that if monotonicity is
generalized suitably and if there are at least
three factors, then the Thomsen condition can
be derived rather than assumed.

Although no concatenation operation is in
sight, a family of them can be defined in terms
of ∼, and they can be shown to satisfy the
axioms of extensive measurement. This is the
nature of the mathematical proof of the repre-
sentation usually given.

Averaging

Some structures with a concatenation opera-
tion do not have an additive representation, but
rather a weighted averaging representation of
the form

ϕ(x ◦ y) = ϕ(x)w + ϕ(y)(1 − w), (5)

where the weight w is fixed. We have already
encountered this form in the utility system if
we think of the gamble (x, p; y) as defining
operations ◦p with x◦p y ≡ (x, p; y), in which
case w = w(p). A general theory of such op-
erations was first given by Pfanzagl (1959). It
is much like extensive measurement but with
associativity replaced by bisymmetry: For all
stimuli x, y, u, v,

(x ◦ y) ◦ (u ◦ v) ∼ (x ◦ u) ◦ (y ◦ v). (6)

It is easy to verify that the weighted-average
representation of Equation (5) implies bisym-
metry, Equation (6), and x ◦ x ∼ x . The eas-
iest way to show the converse is to show that
defining �∼′ over X × X by

(a, x) �∼′ (b, y) ⇔ a ◦ x �∼ b ◦ y

yields an additive conjoint structure, from
which the result follows rather easily.

Nonadditive Representations

A natural question is: When does a concatena-
tion operation have a numerical representation
that is inherently nonadditive? By this, one
means a representation for which no strictly
increasing transformation renders it additive.
Before exploring that, we cite an example of
nonadditive representations that can in fact be
transformed into additive ones. This is helpful
in understanding the subtlety of the question.

One example that has arisen in utility the-
ory is the representation

U (x ⊕ y) = U (x) + U (y) − δU (x)U (y), (7)

where δ is a real constant and U is the SEU
or rank-dependent utility generalization (see
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Luce, 2000, Chap. 4) with an intrinsic zero—
no change from the status quo. Because Equa-
tion (7) can be rewritten

1 − δU (x ⊕ y) = [1 − δU (x)][1 − δU (y)],

the transformation V = −κ ln(1 − δU ),

δκ > 0, is additive, that is, V (x ⊕ y) =
V (x) + V (y), and order-preserving. The mea-
sure V is called a value function. The form in
Equation (7) is called p-additive because it is
the only polynomial with a fixed zero that can
be put in additive form. The source of this
representation is examined in the next major
section. It is easy to verify that both the ad-
ditive and the nonadditive representations are
ratio scales in Stevens’ sense. We know from
extensive measurement that the change of
unit in the additive representation is some-
how reflecting something important about the
underlying structure. Is that also true of the
changes of units in the nonadditive represen-
tation? We will return to this point, which can
be a source of confusion.

It should be noted that in probability theory
for independent events, the p-additive form
with δ = 1 arises since

P(A ∪ B) = P(A) + P(B) − P(A)P(B).

An earlier, similar example concerning
velocity concatenation arose in Einstein’s
theory of special relativity. Like the psycho-
logical one, it entails a representation in the
standard measure of velocity that forms a
ratio scale and a nonlinear transformation to
an additive one that also forms a ratio scale.
We do not detail it here.

Nonadditive Concatenation

What characterizes an inherently nonadditive
structure is the failure of the empirical prop-
erty of associativity; that is, for some elements
x, y, z in the domain,

x ◦ (y ◦ z) /∼ (x ◦ y) ◦ z.

Cohen and Narens (1979) made the then-
unexpected discovery that if one simply drops
associativity from any standard axiomatiza-
tion of extensive measurement, not only can
one still continue to construct numerical rep-
resentations that are onto the positive reals
but, quite surprisingly, they continue to form
a ratio scale as well; that is, the representa-
tion is unique up to similarity transformations.
They called this important class of nonaddi-
tive representations unit structures. For a full
discussion, see Chaps. 19 and 20 of FM III.

A Fundamental Account
of Some Derived Measurement

Distribution Laws

The development of additive conjoint mea-
surement allows one to give a systematic and
fundamental account of what to that point
had been treated as derived measurement. For
classical physics, a typical situation in which
derived measurement arises takes the form
〈A × X, �∼, ◦A〉. For example, let A denote a
set of volumes and X a set of homogeneous
substances; the ordering is that of mass as
established by an equal-arm pan balance in
a vacuum. The operation ◦A is the simple
union of volumes. For this case we know that
m = Vρ, where m is the usual mass measure,
V is the usual volume measure, and ρ is an
inferred measure of density.

Observe that 〈A × X, �∼〉 forms an addi-
tive conjoint structure. By the monotonicity
assumption of conjoint measurement, Equa-
tion (4), �∼ induces the weak order �∼A on A.
It is assumed that 〈A, �∼A, ◦A〉 forms an ex-
tensive structure. Thus we have the extensive
representation ϕA of 〈A, �∼A, ◦A〉 onto the
positive real numbers and a multiplicative
conjoint one ξAξX of 〈A× X, �∼〉 onto the pos-
itive real numbers.

The question is how ϕA and ξA relate.
Because both preserve the order �∼A, there
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must be a strictly increasing function F such
that ξA = F(ϕA). Beyond that, we can say
nothing without some assumption describing
how the two structures interlock. One that
holds for many physical cases, including the
motivating mass example, is a qualitative dis-
tribution law of the form: For all a, b, c, d in
A and x, y in X ,

(a, x) ∼ (c, y)

(b, x) ∼ (d, y)

}
⇒ (a ◦A b, x) ∼ (c ◦A d, y).

Using this, one is able to prove that, for
some r > 0, s > 0, F(z) = r zs . Because the
conjoint representation is unique up to power
transformations, we may select s = 1, that is,
choose ξA = ϕA.

Note that distribution is a substantive, em-
pirical property that in each specific case re-
quires verification. In fact, it holds for many
of the classical physical attributes. From that
fact one is able to construct the basic structure
of (classical) physical quantities that under-
lies the technique called dimensional analysis,
which is widely used in physical applications
in engineering. It also accounts for the fact
that physical units are all expressed as prod-
ucts of powers of a relatively small set of units.
This is discussed in some detail in Chap. 10
of FM I and in a more satisfactory way in
Section 22.7 of FM III.

Segregation Law

Within the behavioral sciences we have a
situation that is somewhat similar to distri-
bution. Suppose we return to the gambling
structure, where some chance “experiment”
is performed, such as drawing a ball from an
urn with 100 red and yellow balls of which
the respondent knows that the number of red
is between 50 and 80. A typical binary gam-
ble is of the form (x, C; y), where C denotes
a chance event such as drawing a red ball, and
the consequence x is received if C occurs and
y otherwise, that is, x if a red ball and y if a
yellow ball. A weak preference order �∼ over

gambles is postulated. Let us distinguish gains
from losses by supposing that there is a spe-
cial consequence, denoted e, that means no
change from the status quo. Things preferred
to e are called gains, and those not preferred
to it are called losses. Assume that for gains
(and separately for losses) the axioms leading
to a subjective expected utility representation
are satisfied. Thus, there is a utility function U
over gains and subjective probability function
S such that

U (x, C; y) = U (x)S(C) + U (y)[1 − S(C)]

(8)

U (e) = 0. (9)

Let ⊕ denote the operation of receiving two
things, called joint receipt. Therefore, g ⊕ h
denotes receiving both of the gambles g and h.
Assume that ⊕ is a commutative5 and mono-
tonic operation with e the identity element;
that is, for all gambles g perceived as a gain,
g ⊕ e ∼ g. Again, some law must link ⊕ to
the gambles. The one proposed by Luce and
Fishburn (1991) is segregation: For all gains
x, y,

(x, C; e) ⊕ y ∼ (x ⊕ y, C; y). (10)

Observe that this is highly rational in the sense
that both sides yield x ⊕ y when C occurs and
y otherwise, so they should be seen as rep-
resenting the same gamble. Moreover, there
is some empirical evidence in support of it
(Luce, 2000, Chap. 4). Despite its apparent
innocence, it is powerful enough to show that
U (x ⊕ y) is given by Equation (7). Thus,
in fact, the operation ⊕ forms an extensive
structure with additive representation V =
−κ ln(1 − δU ), δκ > 0. Clearly, the sign of δ

greatly affects the relation between U and V:
it is a negative exponential for δ > 0, propor-
tional for δ = 0, and an exponential for δ < 0.

5Later we examine what happens when we drop this
assumption.
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Applications of these ideas are given in
Luce (2000). Perhaps the most interesting
occurs when dealing with x ⊕ y where x is
a gain and y a loss. If we assume that V is
additive throughout the entire domain, then
with x �∼ e �∼ y, U (x ⊕ y) is not additive. This
carries through to mixed gambles that no
longer have the simple bilinear form of binary
SEU, Equation (8).

Invariance and Meaningfulness

Meaningful Statistics

Stevens (1951) raised the following issues in
connection with the use of statistics on mea-
surements. Some statistical assertions do not
seem to make sense in some measurement
schemes. Consider a case of ordinal measure-
ment in which one set of three observations
has ordinal measures 1, 4, and 5, with a mean
of 10/3, and another set has measures 2, 3,
and 6, with a mean of 11/3. One would say
the former set is, on average, smaller than the
second one. But since these are ordinal data,
an equally satisfactory representation is 1, 5,
and 6 for the first set and 2, 2.1, and 6.1 for
the latter, with means respectively 12/3 and
10.2/3, reversing the conclusion. Thus, there
is no invariant conclusion about means. Put
another way, comparing means is meaning-
less in this context. By contrast, the median is
invariant under monotonic transformations. It
is easy to verify that the mean exhibits suitable
invariance in the case of ratio scales.

These observations were immediately chal-
lenged and led to what can best be described as
a tortured discussion that lasted many years.
It was only clarified when the problem was
recognized to be a special case of invariance
principles that were well developed in both
geometry and dimensional analysis.

The main reason why the discussion was
confused is that it was conducted at the level
of numerical representations, where two kinds
of transformations are readily confused, rather

than in terms of the underlying structure itself.
Consider a cubical volume that is 4 yards on
a side. An appropriate change of units is from
yards to feet, so it is also 12 feet on a side.
This is obviously different from the transfor-
mation that enlarges each side by a factor of 3,
producing a cube that is 12 yards on a side. At
the level of numerical representations, how-
ever, these two factor-of-3 changes are all too
easily confused. This fact was not recognized
when Stevens wrote, but it clearly makes very
uncertain just what is meant by saying that
a structure has a ratio or other type of repre-
sentation and that certain invariances should
hold.

Automorphisms

These observations lead one to take a deeper
look into questions of uniqueness and invari-
ance. Mapping empirical structures onto nu-
merical ones is not the most general or funda-
mental way to approach invariance. The key
to avoiding confusion is to understand what it
is about a structure that corresponds to correct
admissible transformations of the representa-
tion. This turns out to be isomorphisms that
map an empirical structure onto itself. Such
isomorphisms are called automorphisms by
mathematicians and symmetries by physicists.
Their importance is easily seen, as follows.
Suppose α is an automorphism and f is a ho-
momorphism of the structure into a numerical
one, then it is not difficult to show that f ∗ α,
where ∗ denotes function composition, is an-
other equally good homomorphism into the
same numerical structure. In the case of a ra-
tio scale, this means that there is a positive nu-
merical constant rα such that f ∗ α = rα f . The
automorphism captures something about the
structure itself, and that is just what is needed.

Consider the utility example, Equation (7),
where there are two nonlinearly related rep-
resentations, both of which are ratio scales in
Stevens’ sense. Thus, calculations of the mean
utility are invariant in any one representation,
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but they certainly are not across representa-
tions. Which should be used, if either? It turns
out on careful examination that the one set
of transformations corresponds to the auto-
morphisms of the underlying extensive struc-
ture. The second set of transformations cor-
responds to the automorphisms of the SEU
structure, not ⊕. Both changes are important,
but different. Which one should be used de-
pends on the question being asked.

Invariance

An important use of automorphisms, first em-
phasized for geometry by Klein (1872/1893)
and heavily used by physicists and engineers
in the method of dimensional analysis, is the
idea that meaningful statements should be
invariant under automorphisms. Consider a
structure with various primitive relations. It
is clear that these are invariant under the au-
tomorphisms of the structure, and it is natural
to suppose that anything that can be mean-
ingfully defined in terms of these primitives
should also be invariant. Therefore, in partic-
ular, given the structure of physical attributes,
any physical law is defined in terms of the at-
tributes and thus must be invariant. This def-
initely does not mean that something that is
invariant is necessarily a physical law. In the
case of statistical analyses of measurements,
we want the result to exhibit invariance
appropriate to the structure underlying the
measurements.

To answer Stevens’ original question about
statistics then entails asking whether the hy-
pothesis being tested is meaningful (invariant)
when translated back into assertions about the
underlying structure. Doing this correctly is
sometimes subtle, as is discussed in Chap. 22
of FM III and much more fully by Narens
(2001).

Trivial Automorphisms and Invariance

Sometimes structures have but one automor-
phism, namely the function that maps each

element of the structure into itself—the iden-
tity function. For example, in the additive
structure of the natural numbers with the stan-
dard ordering, the only automorphism is the
one that simply matches each number to itself:
0 to 0, 1 to 1, and so on.

Within the weak ordering �∼ of a structure,
there are trivial automorphisms beyond the
identity mapping, namely, those that just map
an element a to an equivalent element b; that
is, the relation a ∼ b holds.

Consider invariance in such structures. We
quickly see that the approach cannot yield any
significant results because everything is in-
variant. This remark applies to all finite struc-
tures that are provided with a weak ordering.
Thus, the only possibility is to examine the
invariant properties of the structure of the set
of numerical representations.

Let a finite empirical structure be given
with a homomorphism f mapping the struc-
ture into a numerical structure. We have al-
ready introduced the concept of an admissi-
ble numerical transformation ϕ of f , namely,
a one-one transformation of the range of f
onto a possibly different set of real numbers,
such that ϕ ∗ f is a homomorphism of the em-
pirical structure. In order to fix the scale type
and thus the nature of the invariance of the
empirical structure, we investigate the set of
all such homomorphisms for a given empirical
structure. In the case of weight, any two homo-
morphisms f1 and f2 are related by a positive
similarity transformation; that is, there is a
positive real number r > 0 such that r f1 = f2.
In the qualitative probability case with inde-
pendence, r = 1, so the set of all homomor-
phisms has only one element. With r �= 1 in
the general similarity case, invariance is then
characterized with respect to the multiplica-
tive group of positive real numbers, each num-
ber in the group constituting a change of unit.
A numerical statement about a set of numer-
ical quantities is then invariant if and only if
its truth value is constant under any changes of
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unit of any of the quantities. This definition is
easily generalized to other groups of numeri-
cal transformations such as linear transforma-
tions for interval scales.

In contrast, consider a finite difference
structure with a numerical representation as
characterized earlier. In general, the set of all
homomorphisms from the given finite struc-
ture to numerical representations has no natu-
ral and simple mathematical characterization.
For this reason, much of the general theory
of representational measurement is concerned
with empirical structures that map onto the
full domain of real numbers. It remains true,
however, that special finite empirical struc-
tures remain important in practice in setting
up standard measurement procedures using
well-defined units.

Covariants

In practice, physicists hold on to invariance
by introducing and using the concept of co-
variants. Typical examples of such covari-
ants are velocity and acceleration, neither of
which is invariant from one coordinate frame
to another under either Galilean or Lorentzian
transformations, because, among other things,
the direction of the velocity or acceleration
vector of a particle will in general change from
one frame to another. (The scalar magnitude
of acceleration is invariant.)

The laws of physics are written in terms
of such covariants. The fundamental idea is
conveyed by the following. Let Q1, . . . , Qn

be quantities that are functions of the space-
time coordinates, with some Qi s possibly be-
ing derivatives of others, for example. Then, in
general, as we go from one coordinate system
to another (note that ′ does not mean deriva-
tive) Q′

1, . . . , Q′
n will be covariant, rather than

invariant, so their mathematical form is dif-
ferent in the new coordinate system. But any
physical law involving them, say,

F(Q1, . . . , Qn) = 0, (11)

must have the same form

F(Q′
1, . . . , Q′

n) = 0

in the new coordinate frame. This same form
is the important invariant requirement.

A simple example from classical mechan-
ics is the conservation of momentum of two
particles before and after a collision. Let vi

denote the velocity before and wi the velocity
after the collision, and mi the mass, i = 1, 2,
of each particle. Then the law, in the form of
Equation (11), looks like this:

v1m1 + v2m2 − (w1m1 + w2m2) = 0,

and its transformed form will be, of course,

v′
1m1 + v′

2m2 − (w ′
1m1 + w ′

2m2) = 0,

but the forms of vi and wi will be, in general,
covariant rather than invariant.

An Account of Stevens’ Scale-Type
Classification

Narens (1981a, 1981b) raised and partially
answered the question of why the Stevens’
classification into ratio, interval, and ordinal
scales makes as much sense as it seems to.
His result was generalized by Alper (1987),
as described later. The question may be cast
as follows: These familiar scale types have,
respectively, one, two, and infinitely many de-
grees of freedom in the representation; are
there not any others, such as ones having
three or 10 degrees of freedom? To a first ap-
proximation, the answer is “no,” but the pre-
cise answer is somewhat more complex than
that.

To arrive at a suitable formulation, a spe-
cial case may be suggestive. Consider a struc-
ture that has representations onto the reals—
continuous representations—that form an in-
terval scale. Then the representation has the
following two properties. First, given num-
bers x < y and u < v, there is a positive affine
transformation that takes the pair (x, y) into
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(u, v). It is found by setting u = r x + s, v =
r y + s, whence r = v−u

y−x and s = yu−xv

y−x . Thus,
in terms of automorphisms we have the
property that there exists one that maps any
ordered pair of the structure into any other or-
dered pair. This is called two-point homogene-
ity. Equally well, if two affine transforma-
tions map a pair into the same pair, then they
are identical. This follows from the fact that
two equations uniquely determine r and s. In
terms of automorphisms, this is called 2-point
uniqueness. The latter can be recast by say-
ing that any automorphism having two fixed
points must be the identity automorphism.

In like manner, the ratio scale case is
1-point homogeneous and 1-point unique. The
generalizations of these concepts to M—point
homogeneity and N—point uniqueness are
obvious. Moreover, in the continuous case it
is easy to show that M ≤ N . The question ad-
dressed by Narens was: Given that the struc-
ture is at least 1-point homogeneous and N—
point unique for some finite N , what are the
possibilities for (M, N )? Assuming M = N
and a continuous structure, he showed that
the only possibilities are (1, 1) and (2, 2),
that is, the ratio and interval scales. Alper
(1987) dropped the condition that M = N
and showed that (1, 2) can also occur, but that
is the only added possibility. In terms of
numerical representations on all of the real
numbers, the (1, 2) transformations are of
the form x �−→ r x + s where s is any real
and r is in some proper, nontrivial subgroup
of the multiplicative, positive real group.
One example is when r is of the form kn ,
where k > 0 is fixed and n ranges over the
positive and negative integers.

This result makes clear two things. First,
we see that there can be no continuous scales
between interval and ordinal, which of course
is not finitely unique. Second, there are scales
between ratio and interval. None of these
has yet played a role in actual scientific
measurement. Thus, for continuous structures

Stevens’ classification was almost complete,
but not quite.

The result also raises some questions. First,
how critical is the continuum assumption?
The answer is “very”: Cameron (1989)
showed that nothing remotely like the Alper-
Narens result holds for representations on the
rational numbers. Second, what can be said
about nonhomogeneous structures? Alper
(1987) classified the M = 0 case, but the re-
sults are quite complex and apparently not
terribly useful. Luce (1992) explored empir-
ically important cases in which homogeneity
fails very selectively. It does whenever there
are singular points, which are defined to be
points of the structure that remain fixed under
all automorphisms. Familiar examples are 0
in the nonnegative, multiplicative real num-
bers and infinity if, as in relativistic velocity,
it is adjoined to the system. For a broad class
of systems, he showed that if a system has
finitely many singular points and is homoge-
neous between adjacent ones, then there are
at most three singular points—a minimum,
an interior, and a maximum one. The detailed
nature of these fixed points is somewhat com-
plicated and is not discussed here. One spe-
cific utility structure with an interior singular
point—an inherent zero—is explored in depth
in Luce (2000).

Models of Stevens’ Magnitude Methods

Stevens’ (1975) empirical findings, which
were known in the 1950s, were a challenge
to measurement theorists. What underlies the
network of (approximate) power function
relations among subjective measures? Luce
(1959) attempted to argue in terms of repre-
sentations that if, for example, two attributes
are each continuous ratio scales,6 with typi-
cal physical representations ϕ1 and ϕ2, then

6Scale types other than ratio were also studied by Luce
and subsequent authors.
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a matching relation M between them should
exhibit an invariance involving an admissi-
ble ratio-scale change of the one attribute
corresponding under the match to a ratio-
scale change of the other attribute, that is,
M[rϕ1(x)] = α(r)ϕ2(x). From this it is not
difficult to prove that M is a power func-
tion of its argument. A major problem with
this argument is its failure to distinguish two
types of ratio scale transformations—changes
of unit, such as centimeters to meters—and
changes of scale, such as increasing the linear
dimensions of a volume by a factor of three.
Rozeboom (1962) was very critical of this fail-
ure. Luce (1990) reexamined the issue from
the perspective of automorphisms. Suppose M
is an empirical matching relation between two
measurement structures, and suppose that for
each translation (i.e., an automorphism with
no fixed point) τ of the first structure there
corresponds to a translation στ of the sec-
ond structure such that for any stimulus x of
the first structure and any s of the second,
then x Ms holds if and only if for each auto-
morphism τ of the first structure τ(x)Mστ (s)
also holds. This assumption, called transla-
tion consistency, is an empirically testable
property, not a mere change of units. Assum-
ing that the two structures have ratio scale
representations, this property is equivalent to
a power function relation between the repre-
sentations.

Based on some ideas of R. N. Shep-
ard, circulated privately and later modified
and published in 1981, Krantz (1972) devel-
oped a theory that is based on three prim-
itives: magnitude estimates, ratio estimates,
and cross-modal matches. Various fairly sim-
ple, testable axioms were assumed that one
would expect to hold if the psychophysical
functions were power functions of the cor-
responding physical intensity and the ratios
of the instructions were treated as mathe-
matical ratios. These postulates were shown
to yield the expected power function repre-

sentations except for an arbitrary increasing
function. This unknown function was elimi-
nated by assuming, without a strong rationale,
that the judgments for one continuum, such
as length judgments, are veridical, thereby
forcing the function to be a simple multi-
plicative factor. This model is summarized in
Falmagne (1985, pp. 309–313). A somewhat
related approach was offered by Falmagne and
Narens (1983), also summarized in Falmagne
(1985, pp. 329–339). It is based not on beha-
vioral axioms, but on two invariance princi-
ples that they call meaningfulness and dimen-
sional invariance. Like the Krantz theory, it
too leads to the form G(ϕ

ri
i ϕ

r j

j ), where G is
unspecified beyond being strictly increasing.

Perhaps the deepest published analysis of
the problem so far is Narens (1996). Unlike
Stevens, he carefully distinguished numbers
from numerals, noting that the experimen-
tal structure involved numerals whereas the
scientists’ representations of the phenomena
involved numbers. He took seriously the idea
that internally people are carrying out the
ratio-preservation calculations embodied in
Stevens’ instructions. The upshot of Narens’
axioms, which he carefully partitioned into
those that are physical, those that are behav-
ioral, and those that link the physical and the
behavioral, was to derive two empirical pre-
dictions from the theory. Let (x, p, y) mean
that the experimenter presents stimulus x and
the numeral p to which the subject produces
stimulus y as holding the p relation to x. So if
2 is given, then y is whatever the subject feels
is twice x. The results are, first, a commutativ-
ity property: Suppose that the subject yields
(x, p, y) and (y, q, z) when done in that order
and (x, q, u) and (u, p, v) when the numerals
are given in the opposite order. The prediction
is z = v. A second result is a multiplicative
one: Suppose (x, pq, w), then the prediction
is w = z. It is clear that the latter property im-
plies the former, but not conversely. Empirical
data reported by Ellemeirer and Faulhammer



pashler-44093 book December 18, 2001 10:10

26 Representational Measurement Theory

(2000) sustain the former prediction and un-
ambiguously reject the latter.

Luce (2001) provides a variant axiomatic
theory, based on a modification of some math-
ematical results summarized in Luce (2000)
for utility theory. The axioms are formulated
in terms of three primitives: a sensory order-
ing �∼ over physical stimuli varying in inten-
sity, the joint presentation x ⊕ y of signals x
and y (e.g., the presentation of pure tones of
the same frequency and phase to the two ears),
and for signals x > y and positive number p
denote by z = (x, p, y) the signal that the sub-
ject judges makes interval [y, z] stand in pro-
portion p to interval [y, x]. The axioms, such
as segregation, Equation (10), are behavioral
and structural, and they are sufficient to ensure
the existence of a continuous psychophysical
measure ψ from stimuli to the positive real
numbers and a continuous function W from
the positive reals onto the positive reals and a
constant δ > 0 such that for ⊕ commutative

x �∼ y ⇔ ψ(x) ≥ ψ(y), (12)

ψ(x ⊕ y) = ψ(x) + ψ(y) + δψ(x)ψ(y)

(δ > 0), (13)

ψ(x, p, y) − ψ(y) = W (p)[ψ(x) − ψ(y)].

(14)

We have written Equation (14) in this fashion
rather than in a form comparable to the SEU
equation for two reasons: It corresponds to
the instructions given the respondents, and
W (p) is not restricted to [0, 1]. Recent, cur-
rently unpublished, psychophysical data of R.
Steingrimsson showed an important case of ⊕
(two-ear loudness summation) that is rarely,
if ever, commutative. This finding motivated
Aczél, Luce, and Ng (2001) to explore the
noncommutative, nonassociative cases on the
assumption ⊕ has a unit representation (men-
tioned earlier) and assuming Equations (12)
and (14) and that certain unknown functions
are differentiable. To everyone’s surprise, the
only new representations replacing (13) are

either

ψ(x ⊕ y) = αψ(x) + ψ(y), (α > 1)

when x ⊕ 0 � 0 ⊕ x, or

ψ(x ⊕ y) = ψ(x) + α′ψ(y), (α′ > 1)

when x ⊕ 0 ≺ 0 ⊕ x . These are called left- and
right-weighted additive forms, respectively.
These representations imply that some fixed
dB correction can compensate the noncom-
mutativity. Empirical studies evaluating this
are underway.

One invariance condition limits the form of
ψ to the exponential of a power function of de-
viations from absolute threshold, and another
one limits the form of W to two parameters
for p ≥ 1 and two more for p < 1.

The theory not only is able to accommo-
date the Ellemeirer and Faulhammer data but
also predicts that the psychophysical function
is a power function when ⊕ is not commuta-
tive and only approximately a power function
for ⊕ commutative. Over eight or more or-
ders of magnitude, it is extremely close to a
power function except near threshold and for
very intense signals. Despite its not being a
pure power function, the predictions for cross-
modal matches are pure power functions.

Errors and Thresholds

To describe the general sources of errors and
why they are inevitable in scientific work, we
can do no better than quote the opening pas-
sage in Gauss’s famous work on the theory
of least squares, which is from the first part
presented to the Royal Society of Göttingen
in 1821:

However much care is taken with observations
of the magnitude of physical quantities, they are
necessarily subject to more or less considerable
errors. These errors, in the majority of cases,
are not simple, but arise simultaneously from
several distinct sources which it is convenient
to distinguish into two classes.
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Certain causes of errors depend, for each ob-
servation, on circumstances which are variable
and independent of the result which one obtains:
the errors arising from such sources are called
irregular or random, and like the circumstances
which produce them, their value is not suscep-
tible of calculation. Such are the errors which
arise from the imperfection of our senses and all
those which are due to irregular exterior causes,
such as, for example, the vibrations of the air
which make vision less clear; some of the errors
due to the inevitable imperfection of the best in-
struments belong to the same category. We may
mention, for example, the roughness of the in-
side of a level, the lack of absolute rigidity, etc.

On the other hand, there exist causes which
in all observations of the same nature produce
an identical error, or depend on circumstances
essentially connected with the result of the ob-
servation. We shall call the errors of this cate-
gory constant or regular.

It is evident that this distinction is relative up
to a certain point and depends on how broad a
sense one wishes to attach to the idea of obser-
vations of the same nature. For instance, if one
repeats indefinitely the measurement of a sin-
gle angle, the errors arising from an imperfect
division of the circular scale will belong to the
class of constant errors. If, on the other hand,
one measures successively several different an-
gles, the errors due to the imperfection of the
division will be regarded as random as long as
one has not formed the table of errors pertaining
to each division. (Gauss, 1821/1957, pp. 1–2)

Although Gauss had in mind problems of
errors in physical measurement, it is quite
obvious that his conceptual remarks apply as
well to psychological measurement and, in
fact, in the second paragraph refer directly
to the “imperfection of our senses.” It was
really only in the 19th century that, even in
physics, systematic and sustained attention
was paid to quantitative problems of errors.
For a historical overview of the work pre-
ceding Gauss, see Todhunter (1865/1949). As
can be seen from the references in the section
on 19th- and early 20th-century psychology,

quantitative attention to errors in psycholog-
ical measurement began at least with Fech-
ner in the second half of the 19th century.
Also, as already noted, the analysis of thresh-
olds in probabilistic terms really began in psy-
chology with the cited work of Thurstone.
However, the quantitative and mathematical
theory of thresholds was discussed earlier
by Norbert Wiener (1915, 1921). Wiener’s
treatment was, however, purely algebraic,
whereas in terms of providing relatively di-
rect methods of application, Thurstone’s
approach was entirely probabilistic in char-
acter. Already, Wiener (1915) stated very
clearly and explicitly how to deal with the
fact that with thresholds in perception, the
relation of indistinguishability—whether we
are talking about brightness of light, loud-
ness of sound, or something similar—is not
transitive.

The detailed theory was then given in the
1921 paper for constructing a measure up to an
interval scale for such sensation-intensities.
This is, without doubt, the first time that these
important psychological matters were dealt
with in rigorous detail from the standpoint of
passing from qualitative judgments to a mea-
surement representation. Here is the passage
with which Wiener ends the 1921 paper:

In conclusion, let us consider what bearing all
this work of ours can have on experimental psy-
chology. One of the great defects under which
the latter science at present labours is its propen-
sity to try to answer questions without first try-
ing to find out just what they ask. The experi-
mental investigation of Weber’s law7 is a case
in point: what most experimenters do take for
granted before they begin their experiments is
infinitely more important and interesting than
any results to which their experiments lead. One
of these unconscious assumptions is that sensa-
tions or sensation-intervals can be measured,

7Wiener means what is now called Fechner’s logarithmic
law.
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and that this process of measurement can be
carried out in one way only. As a result, each
new experimenter would seem to have devoted
his whole energies to the invention of a method
of procedure logically irrelevant to everything
that had gone before: one man asks his sub-
ject to state when two intervals between sensa-
tions of a given kind appear different; another
bases his whole work on an experiment where
the observer’s only problem is to divide a given
colour-interval into two equal parts, and so on
indefinitely, while even where the experiments
are exactly alike, no two people choose quite
the same method for working up their results.
Now, if we make a large number of comparisons
of sensation-intervals of a given sort with refer-
ence merely to whether one seems larger than
another, the methods of measurement given in
this paper indicate perfectly unambiguous ways
of working up the results so as to obtain some
quantitative law such as that of Weber without
introducing such bits of mathematical stupid-
ity as treating a “just noticeable difference” as
an “infinitesimal,” and have the further merit of
always indicating some tangible mathematical
conclusion, no matter what the outcome of the
comparisons may be. (pp. 204–205)

The later and much more empirical work of
Thurstone, already referred to, did not, how-
ever, give a representational theory of mea-
surement as Wiener, in fact, in his own way
did.

The work over the last few decades on er-
rors and thresholds from the standpoint of rep-
resentation theory of measurement naturally
falls into two parts. The first part is the al-
gebraic theory, and the second is the proba-
bilistic theory. We first survey the algebraic
results.

Algebraic Theory of Thresholds

The work following Wiener on algebraic
thresholds was only revived in the 1950s and
may be found in Goodman (1951), Halphen
(1955), Luce (1956), and Scott and Suppes
(1958). The subsequent literature is reviewed

in some detail in FM II, Chap. 16. We fol-
low the exposition of the algebraic ordinal
theory there. We restrict ourselves here to fi-
nite semiorders, the concept first introduced
axiomatically by Luce and in a modified
axiomatization by Scott and Suppes.

Let A be a nonempty set, and let � be a
binary irreflexive relation on A. Then, (A �)
is a semiorder if for every a, b, c, and d in A

(i) If a � c and b � d, then either a � d or
b � c.

(ii) If a � b and b � c, then either a � d or
d � c.

For finite semiorders (A, �) we can prove the
following numerical representational theorem
with constant threshold, which in the present
case we will fix at 1, so the theorem asserts
that there is a mapping f of A into the positive
real numbers such that for any a and b in A,

a � b iff f (a) > f (b) + 1.

A wealth of more detailed and more delicate
results on semiorders is to be found in Sec-
tion 2 of Chap. 16 of FM II, and research
continues on semiorders and various gener-
alizations of them, such as interval orders.

Axioms extending the ordinal theory of
semiorders to the kind of thing analyzed by
Wiener (1921) are in Gerlach (1957); unfor-
tunately, to obtain a full interval-scale repre-
sentation with thresholds involves very com-
plicated axioms. This is true to a lesser extent
of the axioms for semiordered qualitative
probability structures given in Section 16.6.3
of FM II. The axioms are complicated when
stated strictly in terms of the relation � of
semiorders.

Probabilistic Theory of Thresholds

For applications in experimental work, it is
certainly the case that the probabilistic the-
ory of thresholds is more natural and easier to
apply. From various directions, there are ex-
tensive developments in this area, many but
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not all of which are presented in FM II and
III. We discuss here results that are simple to
formulate and relevant to various kinds of ex-
perimental work. We begin with the ordinal
theory.

A real-valued function P on A× A is called
a binary probability function if it satisfies both

P(a, b) ≥ 0,

P(a, b) + P(b, a) = 1.

The intended interpretation of P(a, b) is as
the probability of a being chosen over b. We
use the probability measure P to define two
natural binary relations.

aW b iff P(a, b) ≥ 1

2
,

aSb iff P(a, c) ≥ P(b, c), for all c.

In the spirit of semiorders we now define
how the relations W and S are related to vari-
ous versions of what is called stochastic tran-
sitivity, where stochastic means that the in-
dividual instances may not be transitive, but
the probabilities are in some sense transitive.
Here are the definitions. Let P be a binary
probability function on A × A. We define the
following for all a, b, c, d in A:

Weak stochastic transitivity: If P(a, b) ≥
1
2 and P(b, c) ≥ 1

2 , then P(a, c) ≥ 1
2 .

Weak independence: If P(a, c) > P(b, c),
then P(a, d) ≥ P(b, d).

Strong stochastic transitivity: If P(a, b) ≥
1
2 and P(b, c) ≥ 1

2 , then P(a, c) ≥
max[P(a, b), P(b, c)].

The basic results for these concepts are
taken from Block and Marschak (1960) and
Fishburn (1973). Let P be a binary probabil-
ity function on A × A, and let W and S be
defined as in the previous equations. Then

1. Weak stochastic transitivity holds if W is
transitive.

2. Weak independence holds if S is con-
nected.

3. Strong stochastic transitivity holds if
W = S. Therefore strong stochastic transi-
tivity implies weak independence; the two
are equivalent if P(a, b) �= 1

2 for a �= b.

Random Variable Representations

We turn next to random variable representa-
tions for measurement. In the first type, an
essentially deterministic theory of measure-
ment (e.g., additive conjoint measurement) is
assumed in the background. But it is recog-
nized that, for various reasons, variability in
response occurs even in what are apparently
constant circumstances. We describe here the
approach developed and used by Falmagne
(1976, 1985). Consider the conjoint indiffer-
ence (a, p) ∼ (b, q) with a, p, and q given
and b to be determined so that the indiffer-
ence holds. Suppose that, in fact, b is a random
variable which we may denote B(a, p; q). We
suppose that such random variables are in-
dependently distributed. Since realizations of
the random variables occur in repeated tri-
als of a given experiment, we can define the
equivalents we started with as holding when
the value b is the Pth percentile of the dis-
tribution of the random variable B(a, p; q).
Falmagne’s proposal was to use the median,
P = 1

2 , and he proceeded as follows. Let φ1

and φ2 be two numerical representations for
the conjoint measurement in the usual deter-
ministic sense. If we suppose that such an ad-
ditive representation is approximately correct
but has an additive error, then we have the
following representation:

ϕ1[B(a, p; q)] = ϕ1(a) + ϕ2(q)

− ϕ2(p) + ε(a, p; q),

where the εs are random variables. It is ob-
vious enough how this equation provides a
natural approximation of standard conjoint
measurement. If we strengthen the assump-
tions a bit, we get an even more natural the-
ory by assuming that the random variable
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ε(a, p; q) has its median equal to zero.
Using this stronger assumption about all the
errors being distributed with a median of zero,
Falmagne summarizes assumptions that must
be made to have a measurement structure.

Let A and P be two intervals of real num-
bers, and let U = {Upq(a) | p, q ∈ P, a ∈ A}
be a collection of random variables, each with
a uniquely defined median. Then U is a struc-
ture for random additive conjoint measure-
ment if for all p, q, r in P and a in A, the
medians m pq(a) satisfy the following axioms:

(i) They are continuous in all variables p, q,

and a.

(ii) They are strictly increasing in a and p,
and strictly decreasing in q .

(iii) They map A into A.

(iv) They satisfy the cancellation rule with
respect to function composition *, i.e.,

(m pq ∗ mqr )(a) = m pr (a),

whenever both sides are defined.

For such random additive conjoint mea-
surement structures, Falmagne (1985, p. 273)
proved that there exist real-valued continuous
strictly increasing functions φ1 and φ2, de-
fined on A and P respectively, such that for
any Upq(a) in U ,

ϕ1[Upq(a)]

= ϕ2(p) + ϕ2(q) − ϕ1(a) + εpq(a),

where εpq(a) is a random variable with a
unique median equal to zero. Moreover, if ϕ′

1

and ϕ′
2 are two other such functions, then

ϕ′
1(a) = αϕ1(a) + β

and

ϕ′
2(p) = αϕ2(p) + γ,

where α > 0.
Statistical tests of these ideas are not a

simple matter but have been studied in or-
der to make the applications practical. Major

references are Falmagne (1978); Falmagne
and Iverson (1979); Falmagne, Iverson, and
Marcovici (1979); and Iverson and Falmagne
(1985). Recent important work on probabil-
ity models includes Doignon and Regenwetter
(1997); Falmagne and Regenwetter (1996);
Falmagne, Regenwetter, and Grofman (1997);
Marley (1993); Niederée and Heyer (1997);
Regenwetter (1997); and Regenwetter and
Marley (in press).

Qualitative Moments

Another approach to measuring, in a repre-
sentational sense, the distribution of a random
variable for given psychological phenomena
is to assume that we have a qualitative method
for measuring the moments of the distribution
of the random variable. The experimental pro-
cedures for measuring such raw moments will
vary drastically from one domain of experi-
mentation to another. Theoretically, we need
only to assume that we can judge qualita-
tive relations of one moment relative to an-
other and that we have a standard weak order-
ing of these qualitatively measured moments.
The full formal discussion of these matters is
rather intricate. The details can be found in
Section 16.8 of FM II.

Qualitative Density Functions

As is familiar in all sorts of elementary prob-
ability examples, when a distribution has a
given form, it is often much easier to char-
acterize it by a density distribution of a ran-
dom variable than by a probability measure
on events or by the method of moments as
just mentioned. In the discrete case, the
situation is formally quite simple. Each atom
(i.e., each atomic event) in the discrete den-
sity has a qualitative probability, and we need
judge only relations between these qualitative
probabilities. We require of a representing dis-
crete density function p on {a1, . . . , an} the
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following three properties:

(i) p(ai ) ≥ 0.

(ii)
∑n

i=1 p(ai ) = 1.

(iii) p(ai ) ≥ p(a j ) iff ai �∼ a j .

Note that the ai are not objects or stimuli in
an experiment, but qualitative atomic events,
exhaustive and mutually exclusive. Also note
that in this discrete case it follows that
p(ai ) ≤ 1, whereas in the continuous case
this is not true of densities.

We also need conditional discrete densi-
ties. For this purpose we assume that the
underlying probability space X is finite or de-
numerable, with probability measures P on
the given family F of events. The relation of
the density p to the measure P is, for ai an
atom of X ,

p(ai ) = P({ai })
Then if A is any event such that P(A) > 0,

p(ai | A) = P({ai } | A),

and, of course, p(ai | A) is now a discrete den-
sity itself, satisfying (i) through (iii).

Here are two simple, but useful, examples
of this approach. Let X be a finite set. Then
the uniform density on X is characterized by
all atoms being equivalent in the qualitative
ordering �∼, that is,

ai ∼ a j .

We may then easily show that the unique den-
sity satisfying the equivalence and (i), (ii), and
(iii) is

p(ai ) = 1

n
,

where n is the number of atoms in X .
Among the many possible discrete distri-

butions, we consider just one further exam-
ple, which has application in experiments in
which the model being tested assumes a prob-
ability of change of state independent of the
time spent in the current state. In the case of
discrete trials, such a memoryless process has

a geometric distribution that can be tested or
derived from some simple properties of the
discrete but denumerable set of atomic events
{a1, . . . , an, . . .}, on each of which is a posi-
tive qualitative probability of the occurrence
of the change of state. The numbering of the
atoms intuitively corresponds to the trials of
an experiment. The atoms are ordered in qual-
itative probability by the relation �∼. We also
introduce a restricted conditional probability.
If i > j then ai | A j is the conditional event
that the change of state will occur on trial i
given that it has not occurred on or before
trial j . (Note that here A j means no change
of state from trial 1 through j .) The qualita-
tive probability ordering relation is extended
to include these special conditional events as
well.

The two postulated properties, in addition
to (i), (ii), and (iii) given above, are these:

(iv) Order property: ai �∼ a j iff j ≥ i ;

(v) Memoryless property: ai+1 | Ai ∼ a1.

It is easy to prove that (iv) implies a weak
ordering of �∼. We can then prove that p(an)

has the form

p(an) = c(1 − c)n−1 (0 < c < 1).

Properties (i) through (v) are satisfied, but they
are also satisfied by any other c′, 0 < c′ < 1.
For experiments testing only the memoryless
property, no estimation of c is required. If it
is desired to estimate c, the standard estimate
is the sample mean m of the trial numbers on
which the change of state was observed, since
the mean µ of the density p(an) = c(1−c)n−1

satisfies the following equation:

µ = 1 − c

c
.

For a formal characterization of the full
qualitative probability for the algebra of
events—not just atomic events—in the case of
the geometric distribution, see Suppes (1987).
For the closely related but mathematically
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more complicated continuous analogue (i.e.,
the exponential distribution), see Suck (1998).

GENERAL FEATURES
OF THE AXIOMATIC APPROACH

Background

History

The story of the axiomatic method begins with
the ancient Greeks, probably in the fifth cen-
tury B.C. The evidence seems pretty convinc-
ing that it developed in response to the early
crisis in the foundations of geometry men-
tioned earlier, namely, the problem of incom-
mensurable magnitudes. It is surprising and
important that the axiomatic method as we
think of it was largely crystallized in Euclid’s
Elements, whose author flourished and taught
in Alexandria around 300 B.C. From a mod-
ern standpoint, Euclid’s schematic approach
is flawed, but compared to any other standard
to be found anywhere else for over two mil-
lennia, it is a remarkable achievement. The
next great phase of axiomatic development
occurred, as already mentioned, in the 19th
century in connection with the crisis gener-
ated in the foundations of geometry itself. The
third phase was the formalization within logic
of the entire language used and the realization
that results that could not be proved otherwise
can be achieved by such complete logical for-
malization. In view of the historical review
presented earlier in this article, we will con-
centrate on only this third phase in this section.

What Comes before the Axioms

Three main ingredients need to be fixed in
an axiomatization before the axioms are for-
mulated. First, there must be agreement on
the general framework used. Is it going to
be an informal, set-theoretical framework or
one formalized within logic? These two al-
ternatives are analyzed in more detail later.

The second ingredient is to fix the primi-
tive concepts of the theory being axioma-
tized. For example, in almost all theories of
choice we need an ordering relation as a prim-
itive concept, which means, formally, a binary
relation. We also often need, as mentioned
earlier, a binary operation as, for example,
in the cases of extensive measurement and
averaging. In any case, whatever the prim-
itives may be, they should be stated at the
beginning. The third ingredient, at least as
important, is clarity and explicitness about
what other theories are being assumed. It is a
characteristic feature of empirical axiomatiza-
tions that some additional mathematics is usu-
ally assumed, often without explicit notice.
This is not true, however, of many qualita-
tive axiomatizations of representational mea-
surement and often is not true in the founda-
tions of geometry. In contrast, many varieties
of probabilistic modeling in psychology do
assume some prior mathematics in formulat-
ing the axioms. A simple example of this
was Falmagne’s axioms for random addi-
tive conjoint measurement, presented earlier.
There, such statistical notions as the median
and such elementary mathematical notions
as that of continuity were assumed without
further explanation or definition.

Another ingredient, less important from a
formal standpoint but of considerable impor-
tance in practice, are the questions of whether
notions defined in terms of the primitive con-
cepts should be introduced when formulating
the axioms and whether auxiliary mathemati-
cal notions are assumed in stating the axioms.
The contrasting alternative is to state the ax-
ioms strictly in terms of the primitive notions.
From the standpoint of logical purity, the lat-
ter course seems desirable, but in actual fact it
is often awkward and intuitively unappealing
to state all of the axioms in terms of the prim-
itive concepts only. A completely elementary
but good example of this is the introduction of
a strict ordering and an equivalence relation
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defined in terms of a weak ordering, a move
that is often used as a way of simplifying and
making more perspicuous the formulation of
axioms in choice or preference theory within
psychology.

Theories with Standard Logical
Formalization

Explicit and formally precise axiomatic ver-
sions of theories are those that are formalized
within first-order logic. Such a logic can be
easily characterized in an informal way. This
logic assumes

(i) one kind of variable;

(ii) logical constants, mainly the sentential
connectives such as and;

(iii) a notation for the universal and existen-
tial quantifiers; and

(iv) the identity symbol =.

A theory formulated within such a logi-
cal framework is called a theory with stan-
dard formalization. Ordinarily, three kinds of
nonlogical constants occur in axiomatizing a
theory within such a framework: the relation
symbols (also called predicates), the opera-
tion symbols, and the individual constants.

The grammatical expressions of the the-
ory are divided into terms and formulas, and
recursive definitions of each are given. The
simplest terms are variables or individual con-
stants. New terms are built up by combining
simpler terms with operation symbols in the
manner spelled out recursively in the formu-
lation of the language of the theory. Atomic
formulas consist of a single predicate and the
appropriate number of terms. Compound
formulas are built up from atomic formu-
las by means of sentential connectives and
quantifiers.

Theories with standard formalization are
not often used in any of the empirical sciences,
including psychology. On the other hand, they
can play a useful conceptual role in answering

some empirically important questions, as we
illustrate later.

There are practical difficulties in casting
ordinary scientific theories into the framework
of first-order logic. The main source of the
difficulty, which has already been mentioned,
is that almost all systematic scientific theo-
ries assume a certain amount of mathematics
a priori. Inclusion of such mathematics is not
possible in any elegant and reasonable way in
a theory beginning only with logic and with no
other mathematical assumptions or apparatus.
Moreover, a theory that requires for its for-
mulation an Archimedean-type axiom, much
needed in representational theories of mea-
surement when the domain of objects consid-
ered is infinite, cannot even in principle be for-
mulated within first-order logic. We say more
about this well-known result later. For these
and other reasons, standard axiomatic formu-
lations of most mathematical theories, as well
as scientific theories, follows the methodol-
ogy to which we now turn.

Theories Defined
as Set-Theoretical Predicates

A widely used alternative approach to formu-
lating representational theories of measure-
ment and other scientific theories is to axiom-
atize them within a set-theoretical framework.
Moreover, this is close to the practice of much
mathematics. In such an approach, axioma-
tizing a theory simply amounts to defining a
certain set-theoretical predicate. The axioms,
as we ordinarily think of them, are a part of
the definition—its most important part from
a scientific standpoint. Such definitions were
(partially) presented earlier in a more or less
formal way (e.g., weak orderings, extensive
structures, and other examples of qualitative
characterizations of empirical measurement
structures). Note that the concept of isomor-
phism, or the closely related notion of homo-
morphism, is defined for structures satisfying
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some set-theoretical predicate. The language
of set-theoretical predicates is not ordinarily
used except in foundational talk; it is just a
way of clarifying the status of the axioms.
It means that the axioms are given within a
framework that assumes set theory as the gen-
eral framework for all, or almost all, mathe-
matical concepts. It provides a seamless way
of linking systematic scientific theories that
use various kinds of mathematics with math-
ematics itself. An elementary but explicit dis-
cussion of the set-theoretical approach to ax-
iomatization is found in Suppes (1957/1999,
chap. 12).

Formal Results about Axiomatization

We sketch here some of the results that we
think are of significance for quantitative work
in experimental psychology. A detailed treat-
ment is given in FM III, Chap. 21. We should
emphasize that all the systematic results we
state here hold only for theories formalized in
first-order logic.

Elementary Languages

First, we need to introduce, informally, some
general notions to be used in stating the re-
sults. We say that a language L of a theory
is elementary if it is formulated in first-order
logic. This means that, in addition to the ap-
paratus of first-order logic, the theory only
contains nonlogical relation symbols, opera-
tion symbols, and individual constants. Intu-
itively, a model of such a language L is sim-
ply an empirical structure, in the sense already
discussed; in particular, it has a nonempty do-
main, a relation corresponding to each primi-
tive relation symbol, an operation correspond-
ing to each primitive operation symbol, and
individuals in the domain corresponding to
each individual constant.

Using such logical concepts, one major re-
sult is that there are infinite weak orders that
cannot be represented by numerical order. A

specific example is the lexicographic order of
points in the plane, that is (x, y) �∼ (x ′, y′) if
and only if either x > x ′ or x = x ′ and y ≥ y′.

In examining the kinds of axioms given
earlier (e.g., those for extensive measure-
ment), it is clear that some form of an
Archimedean axiom is needed to get a numer-
ical representation, and such an axiom cannot
be formulated in an elementary language L, a
point to which we return a little later.

A second, but positive, result arises when
the domains of the measurement structures are
finite. A class of such structures closed un-
der isomorphism is called a finitary class of
measurement structures. To that end, we need
the concept of a language being recursively
axiomatizable; namely, there is an algorithm
for deciding whether a formula of L is an ax-
iom of the given theory. It can be shown that
any finitary class of measurement structures
with respect to an elementary language L is
axiomatizable but not necessarily recursively
axiomatizable in L.

The importance of this result is in show-
ing that the expressive power of elementary
languages is adequate for finitary classes but
not necessarily for the stating of a set of recur-
sive axioms. We come now to another positive
result guaranteeing that recursive axioms are
possible for a theory. When the relations, op-
erations, and constants of an empirical struc-
ture are definable in elementary form when
interpreted as numerical relations, functions,
and constants, then the theory is recursively
axiomatizable.

Nonaxiomatizability Results

Now we turn to a class of results of direct psy-
chological interest. As early as the work of
Wiener (1921), the nontransitive equivalence
relation generated by semiorders was defined
(see the earlier quotation); namely, if we think
of a semiorder, then the indistinguishability or
indifference relation that complements it will
have the following numerical representation.
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For two elements a and b that are indistin-
guishable or indifferent with respect to the
semiorder, the following equivalence holds:

| f (a) − f (b)| ≤ 1 iff a ∼ b.

Now we have already seen that finite
semiorders have a very simple axiomatiza-
tion. Given how close the indistinguishabil-
ity relation is to the semiorder itself, it seems
plausible that this relation, too, should have a
simple axiomatization. Surprisingly, Roberts
(1968, 1969) proved that this is not the case.
More precisely, let L be the elementary lan-
guage whose only nonlogical symbol is the
binary relational symbol ∼. Then the finitary
class J of measurement structures for the
binary relation of indistinguishability is not
axiomatizable in L by a universal sentence.

Note that there is a restriction in the result.
It states that ∼ is not axiomatizable by a uni-
versal sentence. This means that existential
statements are excluded. The simple axiom-
atization of semiorders, given earlier, is such
a universal axiomatization because no quan-
tifiers were required. But that is not true of
indistinguishability. A little later, we discuss
the more general question of axioms with ex-
istential quantifiers for elementary languages.

This result about ∼ is typical of a group
of theorems concerning familiar representa-
tions for which it is impossible to axiomatize
the class of finite structures by adjoining a
universal sentence to an elementary language
L. Scott and Suppes (1958) first proved this
to be true for a quaternary relation symbol
corresponding to a difference representation.
Titiev (1972) obtained the result for additive
conjoint measurement; he also showed that it
holds for the n-dimensional metric structure
using the Euclidean metric; and in 1980 he
showed that it is true for the city-block met-
ric when the number of dimensions n ≤ 3. It
is worth mentioning that the proof for n = 3
given by Titiev required computer assistance
to examine 21,780 cases, each of which

involved 10 equations and 12 unknowns in a
related set of inequalities. To our knowledge,
nothing is known about n > 3.

This last remark is worth emphasizing to
bring out a certain point about the results men-
tioned here. For any particular case (e.g., an
experiment using a set of 10 stimuli), a con-
structive approach, rather than the negative
results given here, can be found for each par-
ticular case. One can simply write down the
set of elementary linear inequalities that must
be satisfied and ask a computer program to
decide whether this finite set of inequalities
in a fixed number of variables has a solu-
tion. If the answer is positive, then a numerical
representation can be found, and the very re-
stricted class of measurement structures built
up around this fixed number of variables and
fixed set of inequalities is indeed a measure-
ment structure. What the theorems show is
that the general elementary theory of such
inequalities cannot be given in any reason-
able axiomatic form. We cannot state for the
various kinds of cases that are considered an
elementary set of axioms that will guarantee
a numerical solution for any finite model
(i.e., a model with a finite domain) satisfying
the axioms.

Finally, in this line of development, we
mention a theorem requiring more sophisti-
cated logical apparatus that was proved by Per
Lindstrom (stated as Theorem 17, p. 243, FM
III), namely, that even if existential quanti-
fiers are permitted, the usual class of finite
measurement structures for algebraic differ-
ence cannot be characterized by a finite set of
elementary axioms.

Archimedean and
Least-Upper-Bound Axioms

We have mentioned more than once that
Archimedean axioms play a special role in
formulating representational theories of mea-
surement when the domain of the empirical
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structures is infinite. Recall that the
Archimedean axiom for extensive measure-
ment of weight or mass asserts that for any
objects a and b, there exists some integer n
such that n replicas of object a, written as
a(n), exceeds b, that is, a(n) �∼ b. This ax-
iom, as well as other versions of it, cannot
be directly formulated in an elementary lan-
guage because of the existential quantification
in terms of the natural numbers. In that sense,
the fact that an elementary theory cannot in-
clude an Archimedean axiom has an immedi-
ate proof. Fortunately, however, a good deal
more can be proved: For such elementary the-
ories, of the kind we have considered in this
chapter, there can be no elementary formulas
of the elementary language L that are equiv-
alent to an Archimedean axiom. After all, we
might hope that one could simply replace the
Archimedean axiom by a conjunction of ele-
mentary formulas, but this is not the case. For
a proof, and references to the literature, see
FM III, Section 21.7.

It might still be thought that by avoiding the
explicit introduction of the natural numbers,
we might be able to give an elementary formu-
lation using one of the other axioms invoked
in real analysis. Among these are Dedekind’s
(1872/1902) axiom of completeness, Cantor’s
(1895) formulation of completeness in terms
of Cauchy sequences, and the more standard
modern approach of assuming that a bounded
nonempty set has a least-upper-bound in terms
of the given ordering. We consider only the
last example because its elementary form al-
lows us to see easily what the problem is. To
invoke this concept, we need to be able to talk
in our elementary language not only about in-
dividuals in the given domain of an empiri-
cal structure, but also about sets of these in-
dividuals. But the move from individuals to
sets of individuals is a mathematically pow-
erful one, and it is not permitted in standard
formulations of elementary languages. As in
the case of the Archimedean axiom, then,

we have an immediate argument for reject-
ing such an axiom. Moreover, as in the case of
the Archimedean axiom, we can prove that no
set of elementary formulas of an elementary
language L is equivalent to the least-upper-
bound axiom. The proof of this follows nat-
urally from the Archimedean axiom, since in
a general setting the least-upper-bound axiom
implies an Archimedean axiom.

Proofs of Independence of Axioms
and Primitive Concepts

All the theorems just discussed can be formu-
lated only within the framework of elemen-
tary languages. Fortunately, important ques-
tions that often arise in discussions of axioms
in various scientific domains can be answered
within the purely set-theoretic framework and
do not require logical formalization. The first
of these is proving that the axioms are inde-
pendent in the sense that none can be deduced
from the others. The standard method for do-
ing this is as follows. For each axiom, a model
is given in which the remaining axioms are
satisfied and the one in question is not sat-
isfied. Doing this establishes that the axiom
is independent of the others. The argument is
simple. If the axiom in question could be de-
rived from the remaining axioms, we would
then have a violation of the intuitive concept
of logical consequence. An example of lack
of independence among axioms given for
extensive measurement is the commutativity
axiom, a ◦ b ∼ b ◦ c. It follows from the
other axioms with the Archimedean axiom
playing a very important role.

The case of the independence of primitive
symbols requires a method that is a little more
subtle. What we want is an argument that will
prove that it is not possible to define one of
the primitive symbols in terms of the others.
Padoa (1902) formulated a principle that can
be applied to such situations. To prove that
a given primitive concept is independent of



pashler-44093 book December 18, 2001 10:10

References 37

the other primitive concepts of a theory, find
two models of the axioms of the theory such
that the primitive concept in question is es-
sentially different in the two models and the
remaining primitive symbols are the same in
the two models.

As a very informal description of a triv-
ial example, consider the theory of preference
based on two primitive relations, one a strict
preference and the other an indifference rela-
tion. Assume both are transitive. We want to
show what is obvious—that strict preference
cannot be defined in terms of indifference. We
need only take a domain of two objects, for
example, the numbers 1 and 2. Then for the in-
difference relation we just take identity: 1 = 1
and 2 = 2. But in one model the strict prefer-
ence relation has 1 preferred to 2, and in the
second preference model the preference rela-
tion has 2 preferred to 1. This shows that strict
preference cannot be defined in terms of in-
difference because indifference is the same in
both models whereas preference is different.

CONCLUSIONS

The second half of the 20th century saw a
number of developments in our understanding
of numerical measurement. Among these are
the following: (a) examples of fundamental
measurement different from extensive struc-
tures; (b) an increased understanding of how
measurement structures interlock to yield sub-
stantive theories; (c) a classification of scale
types for continuous measurement in terms
of properties of automorphism groups; (d) an
analysis of invariance principles in limiting
the mathematical forms of various measures;
(e) a logical analysis of what sorts of the-
ories can and cannot be formulated using
purely first-order logic without existential or
Archimedean statements; and (f) a number of
psychological applications especially in psy-
chophysics and utility theory.

A major incompleteness remains in the so-
cially important area of ability and achieve-
ment testing. Except for the work of Doignon
and Falmange (1999), no representational re-
sults of significance exist for understanding
how individuals differ in their grasp of certain
concepts. This is not to deny the extensive de-
velopment of statistical models, but only to
remark that fundamental axiomatizations are
rarely found. This is changing gradually, but
as yet it is a small part of representational mea-
surement theory.
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