3396 P-01 3/06/2000 9:04 AM Page 1 j\%

Language Syntax

Programmers are always surrounded by complexity . . . If our
basic tool, the language in which we design and code our pro-
grams, is also complicated, the language itself becomes part of
the problem rather than part of its solution.

—C.A.R. HOARE, “THE EMPEROR’S OLD CLOTHES"

The Java language is a derivative of the C++ language with some features bor-
rowed from Objective C, Eiffel, Smalltalk, Mesa, and Lisp. While programmers
migrating from other languages to Java quickly recognize some features of and
similarities to their former favorite language, those same programmers often
assume that a similar feature behaves exactly the same way that it does in the
older language, which is rarely the case. This phenomenon is especially true for
C++ programmers. This part highlights some pitfalls and language behavior
that often trip up new Java programmers.
This part contains the following 10 items:

Item 1, “When Is an “Overriden” Method Not Really Overridden?,”
explains the subtle difference between the dispatching of static methods
and instance methods for subclasses.

Item 2, “Usage of String equals() Method versus the “==" Operator,”
examines the different methods for comparing Strings and how the con-
stant pool confuses the issue.

e

3396 P-01

3/06/2000 9:04 AM Page 2 $

2

Item 1

Item 3, “Java Is Strongly Typed,” examines the rules concerning primi-
tive type conversions and promotions. This Item is especially important
for C and C++ programmers switching to Java.

Item 4, “Is That a Constructor?,” presents a classic, yet simple, pitfall.
When training new Java students, this [tem always causes an astonished
outburst like “the compiler doesn’t catch that?” You will chuckle only if
you have never been bitten by this one.

Item 5, “Cannot Access Overridden Methods,” takes another look at
method dispatching in Java. After reading this Item, you will fully under-
stand the issues involved.

Item 6, “Avoid the “Hidden Field” Pitfall,” discusses the most common
pitfall that should be covered in every introductory Java course and is usu-
ally followed by a discussion of the this reference.

Item 7, “Forward References,” is a short Item demonstrating what for-
ward references are and why you should avoid them.

Item 8, “Design Constructors for Extension,” is based on many hours of
hard-won experience. This Item is a must read for every programmer inter-
ested in developing reusable Java classes.

Item 9, “Passing Primitives by Reference,” is especially useful for C and
C++ programmers transitioning to Java. This Item tackles the issue of pass
by reference in Java.

Item 10, “Boolean Logic and Short-Circuit Operators,” covers another
common pitfall using logical operators. This Item also demonstrates a
clear case of when to use short-circuit operators.

Item 1: When Is an “Overridden” Method
Not Really Overridden?

OK, so I admit it. The question posed in the title of this item is really a trick
question. The goal of this item, though, is not to trick you, but rather to help you
understand the concept of overriding methods. I'm sure that you have picked
up a book or two that began explaining Java by pointing out the three main con-
cepts of object-oriented programming: encapsulation, inheritance, and poly-
morphism. Understanding these three concepts is crucial to understanding the
Java language. Understanding method overriding is crucial because it is a key
part of inheritance.

Overriding an instance method is covered in Item 5. This item covers over-
riding static methods. If you didn’t know there was a difference, then this item
(as well as Item 5) is for you. If you have started breaking out into a sweat and

e

3396 P-01 3/06/2000 9:04 AM Page 3 :F

When Is an “Overridden” Method Not Really Overridden? 3

find yourself screaming “You can’t override a static method!,” then you may
want to relax a bit and move on to the next item. But first, see if you can figure
out what the output of the following example will be.

This example is taken from the Java Language Specification, section 8.4.8.5:

01l: class Super

02: |

03: static String greeting/()
04: {

05: return "Goodnight";
06: }

07:

08: String name ()

09: {

10: return "Richard";
11: }

12: }

01l: class Sub extends Super
02: |

03: static String greeting()
04: {

05: return "Hello";

06: }

07:

08: String name ()

09: {

10: return "Dick";

11: }

12: |}

01: class Test

02: |

03: public static void main(String[] args)

04: {

05: Super s = new Sub();

06: System.out.println(s.greeting() + ", " + s.name());
07: }

08: }

The output from running class Test is:
Goodnight, Dick

If you came up with the same output, then you probably have a good under-
standing of method overriding. If you didn’t, let’s figure out why. We will start by
examining each class. Class Super consists of the methods greeting and
name. Class Sub extends class Super and also has the greeting and name
methods. Class Test simply has a main method.

e

3396 P-01

3/06/2000 9:04 AM Page 4 :F

Item 1

In line 5 of class Test, we create an instance of class Sub. Make sure that you
understand that even though variable s has a data type of class Super it is still
an instance of class Sub. If that’s a bit confusing, then you can think of it this
way: Variable s is an instance of class Sub that is cast to type Super. The next
line (6) displays the value of the returned by s.greeting (), followed by the
string “,” and the value returned by s .name () . The key question is “Are we call-
ing the methods of class Super, or are we calling the methods of class Sub?”
Let’s first figure out if we are calling class Super’s name method or class Sub’s
name method. The name method in both the Super class and the Sub class is an
instance method, not a static method. Because class Sub extends class Super
and has a name method with the same signature as its parent class, the name
method in class Sub overrides the name method in class Super. Because vari-
able s is an instance of class Sub and class Sub’s name method overrides class
Super’'s name method, the value of s.name () is “Dick.”

We are half way there. Now we need to figure out if the greet ing method is
being called by class Super or by class Sub. Notice that the greet ing method
in both the Super class and the Sub class is a static method, also known as a
“class” method. Despite the fact that the greeting method of class Sub has
the same return type, the same method name, and the same method parame-
ters, it does not override the greeting method in class Super. Because vari-
able s is cast as type Super and the greeting method of class Sub does not
override the greet ing method of class Super, the value of s.greeting() is
“Goodnight.” Still confused? Follow this rule: “Instance methods are overrid-
den, static methods are hidden.” If you were the reader who was screaming
“You can’t override a static method!,” you are absolutely right.

Now you may be asking this: “What is the difference between hiding and
overriding?” You may have not recognized it, but we actually just covered the
difference in the Super/Sub class example. Using a qualified name can access
hidden methods. Even though variable s is an instance of class Sub and the
greeting method of class Sub hides the greeting method of class Super,
we can still access the hidden greet ing method by casting variable s to class
Super. Overridden methods differ because they cannot be accessed outside of
the class that overrides them. That is why variable s calls class Sub’s name
method and not class Super’s name method.

This item is a short explanation of a sometimes confusing aspect of the Java
language. Perhaps the best way for you to understand the difference between
hiding a static method and overriding an instance method is for you to create a
few classes similar to class Sub and class Super. Remember, instance methods
are overridden and static methods are hidden. Overridden methods cannot be
accessed outside of the class that overrides them. Hidden methods can be
accessed by providing the fully qualified name of the hidden method.

Now that we understand that the answer to the question posed by the title of
this item is “never,” I have a few more tidbits for you to keep in mind:

e

3396 P-01

3/06/2000 9:04 AM Page 5 :F

Usage of String equals() Method versus the “==" Operator

m It is illegal for a subclass to hide an instance method of its super class
with its own static method of the same signature. This will result in a com-
piler error.

m [tisillegal for a subclass to override a static method of its super class with
its own instance method of the same signature. This will also result in a
compiler error.

m Static methods and final methods cannot be overridden.

Instance methods can be overridden.

m Abstract methods must be overridden.

Item 2: Usage of String equals() Method
versus the “==" Operator

Those of you who come from a C++ background will no doubt be confused
when it comes to the equal to operator, ==, when used with class String.
The main area of confusion centers around the fact that the String.
equals (..) method and the == operator are not the same even though they
sometimes produce the same result. Consider the following example:

01: public class StringExample

02: {

03: public static void main (String argsl])

04: {

05: String s0 = "Programming";

06: String sl = new String ("Programming") ;

07: String s2 = "Program" + "ming";

08:

09: System.out.println("sO.equals(sl): " + (sO.equals(sl)));
10: System.out.println("sO.equals(s2): " + (sO.equals(s2)));
11: System.out.println("s0 == sl: " + (s0 == sl1));

12: System.out.println("s0 == s2: " + (s0 == s2));

13: }

14: }

The example contains three variables of type String, two of which are
assigned the constant expression “Programming” and one of which is assigned
an instance of a new String whose value is “Programming”. Performing the
comparisons using the equals (..) method and the “==" operator yields the
following output:

s0.equals(sl): true
s0.equals (s2): true
s0 == sl: false
s0 == s2: true

3396 P-01

3/06/2000 9:04 AM Page 6 :F

Item 2

Using the equals (..) method to compare strings will perform a character-
by-character comparison on the strings and return a true if the strings are equal.
In this case, all three strings are equal so when comparing the string s0 to either
sl or s2 we get a true return value. When the “==" operator is used, the refer-
ences to the string instances are compared. In this case s0O is not the same
instance as si, but sO and s2 are the same object. How can sO and s2 be the
same object? The answer to this question comes from the Java Language Spec-
ification in the section on String Literals. In this example “Programming,” “Pro-
gram,” and “ming” are all string literals' and are computed at compile time.
When a string is formed by concatenating many string literals, such as s2, the
result is also computed at compile time to be a string literal. Java ensures that
there is only one copy of a string literal so when “Programming” and “Program”
+ “ming” are determined to have the same value, Java sets both variable refer-
ences to the same literal reference. Java tracks string literals in the “constant
pool.”

The “constant pool” is something that is computed at compile time and
stored with the compiled .class file. It contains information on methods,
classes, interfaces, ..., and string literals. When the JVM loads the .class file and
the sO and s2 variables are resolved, the JVM does something called constant
pool resolution. The process of constant pool resolution for string follows
these steps, as taken from the Java Virtual Machine Specification (5.4):

m If another constant pool entry tagged CONSTANT String® and repre-
senting the identical sequence of Unicode characters has already been
resolved, then the result of resolution is a reference to the instance of
class String created for that earlier constant pool entry.

m Otherwise, if the method intern has previously been called on an
instance of class String containing a sequence of Unicode characters
identical to that represented by the constant pool entry, then the result of
resolution is a reference to that same instance of class String.

m Otherwise, a new instance of class String is created containing the se-
quence of Unicode characters represented by the CONSTANT_String
entry; that class instance is the result of resolution.

What this says is that the first time a string is resolved from the constant
pool, an instance of the string is created on the Java heap. Any other subse-
quent references to the same literal in the constant pool always returns the ref-
erence of the string instance that was already created. When the JVM processes
line 6 it creates a copy of the string literal “Programming” into another instance

"From the Java Language Specification: “A string literal consists of zero or more characters
enclosed in double quotes. Each character may be represented by an escape sequence.”

2This is used internal to the .class file to identify string literals.

e

3396 P-01

3/06/2000 9:04 AM Page 7 :F

Usage of String equals() Method versus the “==" Operator

of class String. So when the references to sO and s are compared the result is
false because they are not the same object. This is why the behavior sO == sI
will sometimes be different from the behavior of sO.equals(s1). The first com-
pares the object reference values; the second actually does a character-by-
character comparison.

The “constant pool” that exists in the .class file is loaded into memory by the
JVM and can be extended at runtime. The method intern () mentioned previ-
ously serves this purpose for instances of class String. When the intern ()
method is called on an instance of String it will follow the same rules previ-
ously outlined for constant pool resolution, except for step 3. Because the
instance already exists there is no need to create another one, so the existing
instance reference is added to the constant pool. Let’s look at another example.

01: import java.io.*;

02:

03: public class StringExample2

04: {

05: public static void main (String argsl[])

06: {

07: String sFileName = "test.txt";

08: String s0 = readStringFromFile (sFileName) ;

09: String sl = readStringFromFile (sFileName) ;

10:

11: System.out.println("s0 == sl: " + (s0 == sl));

12: System.out.println("sO.equals(sl): " + (sO0.equals(sl)));
13:

14: s0.intern() ;

15: sl.intern() ;

16:

17: System.out.println("s0 == sl: " + (s0 == sl));

18: System.out.println("s0 == sl.intern(): " +

19: (s0 == sl.intern()));
20: }

21:

22: private static String readStringFromFile (String sFileName)
23: {

24 : //...read string from file...

25: }

26: }

This example does not set the values of sO and sI to string literal values.
Instead it reads strings from a file at runtime and assigns the instances created
from the method readStringFromFile (...) to the variables. After line 9 is
processed two new string instances will have been created that have identical
character values. When you look at the output that results from line 11 and 12
you will notice once again that the objects are not the same, but the contents of
the objects are. Here is the output:

e

3396 P-01 3/06/2000 9:04 AM Page 8 :F

8 Item 3
s0 == sl: false
s0.equals(sl): true
s0 == sl: false
s0 == sl.intern(): true

What line 14 does is add the reference of the String instance stored by s0 into
the constant pool. When line 15 is processed, the call to intern () simply
brings back a reference to s0. So the output from lines 17 and 18 is what we
expected—there are still two distinct instances of class String, so sO == sl is
false, and because acallto s1.intern () brings back the value from the con-
stant pool (which is s0), the expression sO == s1.intern() is true. If we wanted
s1’s instance to be in the constant pool, we would have to first set sO to null,
then run the garbage collector to reclaim the string instance that was pointed to
be s0. After sO was reclaimed a call to s1.intern () would add it to the con-
stant pool.

In summary, you should always use the String.equals (..) method for
doing equality comparisons, not the == operator. If your heart is set on using
the == operator you can do so with the help of the intern () method. The
n.equals (m) method returns the same result as the n.intern() ==
m.intern() statement, where n and m are references to instances of class
String. The intern () method is at your disposal if you determine that you will
benefit from using the constant pool.

Item 3: Java Is Strongly Typed

Every Java developer needs a good understanding of the primitive types Java
supports. What are the pitfalls? How are they different from the language
you used to use? Like many languages, Java is strongly typed, supporting
eight primitive data types. These primitives are the building blocks from which
objects are constructed. By strictly checking the usage of these types, the Java
compiler is able to catch many simple errors early in the development process.

Most developers are familiar with data types and the values and operations
associated with them. There are a few subtleties in Java you should be aware
of. Unlike when using other languages, because Java’s primitive types are
always represented consistently in the JVM, you can write code that relies on
that representation without affecting portability. This makes bit-manipulation
safer to perform.

Also, boolean types are not convertible. Unlike C or C++, Java does not let
you write code that converts between boolean and non-boolean types. If you've
used either of those languages, you've probably written some “elegant” code
hacks that relied on boolean false being equal to zero or true being nonzero.

e

3396 P-01

3/06/2000 9:04 AM Page 9 :F

Java Is Strongly Typed

In C, you could write code that checks the return value of a function like this:

value = get value() ;
if (value) do_something;

Similar code will fail to compile in Java. The conditional statement is expect-
ing a boolean, so you must give it one:

value = getValue() ;
if (value != null) doSomething;

Type Conversion

Because conversion of primitive types can happen implicitly in Java, you need
to understand when and how it works. Conversion of non-boolean types is log-
ical, and generally the compiler will warn you if your code could result in a loss
of precision.

Arithmetic operations in Java are subject to the same potential problems as
other languages. Most developers have written code that results in the acciden-
tal truncation of data. For example, line 10 in the Truncation class will print out
“2.0” instead of the “2.4” output produced by lines 11 and 12.

01: public class Truncation

02: {

03: static void printFloat (float f)

04: {

05: System.out.println ("f = " + f);

06: }

07:

08: public static void main (String[] args)
09: {

10: printFloat (12 / 5); // data lost!
11: printFloat ((float) 12 / 5);

12: printFloat (12 / 5.0f);

13: }

14: }

Because 12 and 5 are both integers, the result of the expression in line 10 is
an integer; therefore the fraction is lost. The fact that the printFloat method
is expecting a float does not matter; the truncation has already been done. The
fix is simple: As long as either value in the expression is a float, the other will
be promoted to a float also. So, lines 11 and 12 both work fine.

Widening

As long as your values can be converted without loss of magnitude, this con-
version will happen automatically. In these cases, the conversion is referred to

e

3396 P-01

3/06/2000 9:04 AM Page 10 :F

Item 3

float (32) |—>| double (64)|

Figure 3.1 Widening conversions.

as widening because the types are being converted into a type capable of stor-
ing larger values. The automatic conversion is called promotion.

For example, you can assign a byte value into an int variable because this
cannot result in a loss of magnitude or precision. The widening conversions are
shown in Figure 3.1. The number of bits used to store each type is shown in
parentheses. As long as you convert to a type with more bits, you will not lose
any information.

Note that if you convert an int or long into a float, or a long into a double, you
might lose some precision. In other words, some of the least significant bits may
be lost. This kind of promotion can happen implicitly. The output from this exam-
ple (-46) shows a loss of precision that occurs without any compiler warning.

public class LostPrecision

{

public static void main (Stringl[] args)

{

int orig = 1234567890;

float approx = orig;

int rounded = (int) approx; // lost precision
System.out.println (orig - rounded) ;

Widening is described in more detail in section 5.1.2 of the JLS: “The result-
ing floating-point value will be a correctly rounded version of the integer value,
using IEEE 754 round-to-nearest mode. Despite the fact that loss of precision
may occur, widening conversions among primitive types never result in a run-
time exception.”

Narrowing

Narrowing conversions (any conversion other than a left-to-right trace on Fig-
ure 3.1) can result in a loss of information. For example, if you try to convert a
floating-point type to an integer, or when you risk overflow by converting a long
to a short, you'll get a compiler error. You can avoid this error by including an
explicit cast, which essentially tells the compiler “I know what I'm doing and
accept the risk.”

e

3396 P-01

3/06/2000 9:04 AM Page 11 :F

Java Is Strongly Typed

11

Implicit Type Conversion

Implicit conversion means a conversion that happens automatically, without
requiring an explicit cast operator. This happens only in the case of widening
conversions, with one exception. For convenience, narrowing conversions may
be implicit if the variable is a byte, short, or char, and the expression is a con-
stant int value that will fit into the variable.

For example, the assignment in line 7 of the TypeConversion program will
compile because 127 can be stored as a byte (range —128 to +127), but line 8 will
not because 128 is too large.

01: public class TypeConversion

02: {

03: static void convertArg (byte b) { }

04:

05: public static void main (Stringl[] args)

06: {

07: byte bl = 127;

08: // byte b2 = 128; // won't compile
09:

10: // convertArg (127); // won't compile
11: convertArg ((byte)1l27);

12:

13: byte cl = bl;

14: // byte c2 = -bl; // won't compile
15: int i = ++bl; // overflow

16: System.out.println ("i = " + 1i);

17: }

18: }

Implicit type conversion can happen in three situations: assignments,
method calls, and arithmetic operations. Assignment statements store the value
from the right-hand expression into a variable, and conversion is necessary if
the types are different.

Similarly, when you make a method call, your arguments may need to be con-
verted. For example, the Math.pow () method requires its arguments to be
doubles, and you may wish to use integer values. Because that’s a widening con-
version, you don’t have to explicitly cast your arguments. Note that unlike
assignment statements, implicit narrowing conversions are not supported for
method calls. So, line 10 will not compile, but line 11, which is an explicit cast,
will compile fine.

The third case is called arithmetic promotion, and it happens whenever you
perform arithmetic operations using values with different types—for example,
if you want to add an int and a float, or when you want to compare a short and
a double. In these cases, the narrower type is converted to the wider type.

e

3396 P-01

3/06/2000 9:04 AM Page 12 :F

12

Item 4

Also, all byte, short, and char values are always promoted into int values (at
least). This is true for most (but not all) unary operators, such as the unary
minus operator (-) in line 14. If you uncomment line 14 and try to compile the
program, you'll get this error message:

TypeConversion.java:14: possible loss of precision
found : int
required: byte

The compiler promoted bl to an int, and then it warned you that the int
value might not fit into the byte variable. Based on that, you might expect (and
hope) that the byte value in line 15 would be automatically promoted to an inte-
ger as it was incremented and that line 16 would print out “i = 128.” Instead, an
overflow occurs, and the output shows a negative number: “i = —128.”

Item 4: Is That a Constructor?

Did you ever have a bug that was caused by a simple mistake, yet it took you all
day to figure out? The nature of this type of bug is such that you may discover
it in a minute or you may anguish over it for hours. The following code contains
one of these bugs. Let’s see how long it takes you to figure it out.

01: public class IntAdder

02: |

03: private int x;

04: private int y;

05: private int z;

06:

07: public void IntAdder ()

08: {

09: X = 39;

10: y = 54;

11: Z =X + Y;

12: }

13:

14: public void printResults ()

15: {

16: System.out.println("The value of 'z' is '" + z + "'");
17: }

18:

19: public static void main (Stringl[] args)
20: {

21: IntAdder ia = new IntAdder();
22: ia.printResults () ;

23: }

24: }

3396 P-01

3/06/2000 9:04 AM Page 13 :F

Is That a Constructor?

13

The IntAdder class is rather simple. It has three private field members named
x, ¥, and z, a constructor, an instance method named printResults, and a
static main method. Let’s step through the code. On line 21, we instantiate an
IntAdder object named ia. The IntAdder constructor on line 7 sets the value of
field members x and y, and then it adds them together, storing the results in
field member z. On line 22, we call the printResults method, which prints
the value of z to the screen. The output from running the IntAdder class should
be:

The value of 'z' is '93!

Do you agree with the expected output? If so, you missed the bug. The actual
output is:

The value of 'z' is '0'

Take another look and see if you can find the problem. Still stumped? Let’s
take a closer look at the code. On line 21, we instantiate an IntAdder object
name ta. The IntAdder constructor on line 7 sets the value of field members x
and y, and then it adds them together, storing the results in field member z. Or
does it? If we take a closer look at line 7 we see that IntAdder is actually a
method, not a constructor. I mistakenly added a return type of “void” to what I
intended to be my constructor. The “void” return type turned my constructor
into a method. If the IntAdder method on line 7 is not my constructor, then
what constructor is getting called when I instantiate my object? Because there
is no constructor, Java provides the IntAdder class with a default no-argument
constructor. The default no-argument constructor has no implementation. The
default constructor acts as if I typed in the following constructor:

public IntAdder() { }

Therefore, the object that gets created on line 21 still has x, ¥, and z values of
0. When the printResults method gets called on line 22, we see the follow-
ing output:

The value of 'z' is '0'.

There are a couple of key issues with this “simple” little bug. First, we notice
that we did not get a compiler error or a runtime error even though we had a
method with the same name as our class name. It is legal to have a method
named the same as your class, but it certainly is not advised. Constructors must
have the same name as the class. This makes them easy to find. Therefore, only
constructors should have the same name as the class. If you have methods with
the same name as the class you are likely to confuse your fellow programmers.
Also, naming methods the same as the class contradicts standard conventions.

e

3396 P-01

3/06/2000 9:04 AM Page 14 :F

14

Item 5

Method names are generally verbs or verb phrases and have the first character
of the first word in lowercase and the first character of subsequent words in
uppercase. Class names are generally nouns or noun phrases with the first char-
acter of every word in uppercase. See section 6.8 of the Java Language Specifi-
cation for further information on naming conventions. The second issue we
notice in this example is that if we do not have a constructor in our class, Java
will provide us with a default constructor with no implementation. This
happens only if we do not include a constructor. If we have a constructor with
any number of arguments then Java does not provide a default no-argument
constructor.

Item 5: Cannot Access Overridden Methods

Imagine that you are maintaining an application that contains a third-party Java
text editor. The text editor in your application currently supports RTF and has
a spelling and grammar checker. In the program code of the application itself,
you can create new documents or open new documents by accessing the edi-
tor’s DocumentManager object. Each time one of these methods is called, a
Document object is returned, which provides instance methods for spell check-
ing, grammar checking, and so on. One day, you get a call from your client, who
tells you that the text editor in the application needs to support HTML display
and editing in addition to RTF. You feel confident you can fulfill this request
because you know the third-party vendor that supplies your text editor just
upgraded it to support HTML display and editing. Furthermore, the vendor
guaranteed backward compatibility because all new functionality was placed in
a subclass of Document, called HTMLDocument, and the Document code did
not change. The new version could be plugged in immediately with no code
changes, and the new features of HTMLDocument could be accessed by cast-
ing the Document object returned from the DocumentManager to an HTML-
Document. Wanting to please your client and being a little overzealous, you get
the new version, add some code to take advantage of the new HTML features,
and tell your client that the new functionality will be available in a month (just
enough time for QA).

Feeling good about yourself, you are surprised to see a report from QA indi-
cating a problem with the spell checker. You confirm that the spell checker is
broken in the HTMLDocument, but thinking you're a smart Java programmer,
you believe you can trick the HTMLDocument into using the spellCheck ()
method from the Document object instead. After all, the vendor stated that
the Document code did not change. You try everything to invoke the
spellCheck () method from Document—not casting Document to HTML-
Document, declaring a local Document variable and setting it to the Document
object passed in, using reflection to access the spellCheck () method in

e

3396 P-01

3/06/2000 9:04 AM Page 15 :F

Cannot Access Overridden Methods

15

Document—but nothing works. After many frustrated calls to the vendor sup-
port line, which claims that the Document object code did not change, you
finally consult the Java Language Specification (8.4.6.1) and see this:

An overridden method can be accessed by using a method invocation expression
that contains the keyword super. Note that a qualified name or a cast to a super-
class type is not effective in attempting to access an overridden method,; . . .

Finally, it all makes sense! The third-party Java text editor library always cre-
ates an object of type HTMLDocument when you get a document from the
DocumentManager. No matter what you try to do to the HTMLDocument (cast-
ing, reflection, and so forth), you will always call the spellCheck () method
of HTMLDocument and not the spellCheck () method of Document. In fact,
when you have a subclass that overrides instance methods of a superclass, the
only way to access those overridden methods is by using super from within the
subclass. Any external classes utilizing the subclass can never get to the over-
ridden instance methods of the superclass. The source code that follows
demonstrates this concept.

01l: class DocumentManager

02: {

03: public Document newDocument ()

04: {

05: return (new HTMLDocument ()) ;

06: }

07: }

08:

09: class Document

10: {

11: public boolean spellCheck ()

12: {

13: return (true) ;

14: }

15: }

16:

17: class HTMLDocument extends Document

18: {

19: public boolean spellCheck ()

20: {

21: System.out.println("Trouble checking these darn hyperlinks!");
22: return (false);

23: }

24 : }

25:

26: public class OverridingInstanceApp

27: |

28: public static void main (String argsl(])
29: {

30: DocumentManager dm = new DocumentManager () ;

e

3396 P-01

3/06/2000 9:04 AM Page 16 :F

16 Item 5
31: Document d = dm.newDocument () ;
32: boolean spellCheckSuccessful = d.spellCheck();
33: if (spellCheckSuccessful)
34: System.out.println("No spelling errors where found.");
35: else
36: System.out.println ("Document has spelling errors.");
37: }
38: }

Line 32 is where we attempt to call the spellCheck () method on what we
think is a plain Document object. It, however, is really an instance of HTML-
Document so the spellCheck () method call we make calls the one defined in
the HTMLDocument class. The output produced from this example is this:

Trouble checking these darn hyperlinks!
Document has spelling errors.

Note that the inability to access overridden superclass methods applies only
to instance methods—those methods in a class that are not static. Methods in a
class that are static can be accessed even if they are overridden by a subclass.
This can be accomplished by casting to the superclass. By changing line 11 and
19 to the following line, we change the spellCheck () method call to be
static.

public static boolean spellCheck (Document d)

And by changing line 32 to the following line we can make the call to the sta-
tic method.

boolean spellCheckSuccessful = d.spellCheck(d);

Running the modified example will produce the following output:

No spelling errors where found.

You may be wondering if the example described here has actually occurred.
This example is fictitious, but cases do exist where an upgrade of a class has
occurred in this manner. Any classes that currently support the old object
(superclass) still think they are getting an instance of the old class, when in fact
they are getting an instance of the new class (subclass with new functionality).
A good example of this is Javasoft’s introduction of the Graphics2D object
when Java 2D was introduced into the JDK. All AWT methods that were passed
Graphics objects (such as paint (..) and update (...)) in the older version of
the JDK were actually being passed Graphics2D objects in the new version
of the JDK. And yes, Graphics2D overrides instance methods in Graphics

e

3396 P-01

3/06/2000 9:04 AM Page 17 :F

Avoid the “Hidden Field” Pitfall

17

(example: draw3DRect ()) . Ifdraw3DRect () contained a bug in the Graph-
1cs2D class but worked fine in the Graphics class, guess what—you were stuck
with the method provided by Graphics2D.

Even though nothing can be done to access an overridden superclass
instance method from outside of a subclass, it is good to know that this can be
a source for errors. If you suspect that an object you are using is actually an
instance of a subclass you can always call getClass () .getName () on the
object to determine its true identity. And if you are the programmer adding new
functionality by subclassing, make sure that extensive compatibility tests are
performed or ensure that any new functionality is performed by adding new
methods and not by overriding superclass methods.

Item 6: Avoid the “Hidden Field” Pitfall

Understanding how field members are hidden in the Java language is just as
important as understanding how methods get overridden. If you think you
understand how field members get hidden because you understand how meth-
ods get overridden, then you better read the rest of this item. Unintentionally
hiding a field member or mistakenly thinking that you have “overridden” a field
member can cause undesirable results in your program.

01: public class Wealthy

02: |
03: public String answer = "Yes!";
04: public void wantMoney ()
05: {
06: System.out.println ("Would you like $1,000,000? > "+ answer);
07: }
08: public static void main(String[] args)
09: {
10: Wealthy w = new Wealthy() ;
11: w.wantMoney () ;
12: }
13: |}
Output:

Would you like $1,000,000? > Yes!

In this example, class Wealthy has an instance variable named answer, a
wantMoney method, and a main method. The main method creates instance
w of class Wealthy. Instance w calls its wantMoney method, which prints a
question and responds with the value of the instance variable answer. The

e

3396 P-01 3/06/2000 9:04 AM Page 18 :F

18 Item 6

previous example answers the question correctly; now let’s take a look at an
example that does not answer the question correctly.

01: public class Poor

02: |
03: public String answer = "Yes!";
04: public void wantMoney ()
05: {
06: String answer = "No!"; // hides instance variable answer
07: System.out.println("Would you like $1,000,000? > " + answer);
08: }
09: public static void main(String[] args)
10: {
11: Poor p = new Poor();
12: p.wantMoney () ;
13: }
14: |}
Output:

Would you like $1,000,000? > No!

Notice in the output of this example the response to the question has
changed to “No!”. The local variable answer hides the instance variable
answer; therefore, the response is the value of the local variable. In an example
this simple it is obvious that the local variable answer hides the instance vari-
able answer, producing an undesired result. In larger, more complex programs,
though, it can be difficult to find a problem caused by a field member that is hid-
den by accident. To avoid problems with data hiding it is important to under-
stand the following:

The different kinds of Java variables
The scope of a variable

Which kinds of variables can be hidden
How those kinds of variables get hidden

How to access a hidden variable

How hidden variables differ from overridden methods

Kinds of Java Variables

The six kinds of variables are class variables, instance variables, method param-
eters, constructor parameters, exception-handler parameters, and local vari-
ables. Class variables are static data fields declared in a class declaration as

e

3396 P-01

3/06/2000 9:04 AM Page 19 :F

Avoid the “Hidden Field” Pitfall

19

well as static or nonstatic data fields declared in an interface declaration.
Instance variables are nonstatic variables declared in a class declaration. The
term “field members” refers to both class variables and instance variables.
Method parameters are arguments passed to a method. Constructor parameters
are arguments passed to a constructor. Exception-handler parameters are argu-
ments passed to the catch block of a try statement. Finally, local variables are
variables declared in a block of code or in a “for” statement.
This example declares a variable of each type:

01: public class Types

02: {

03: int x; // instance variable

04: static int y; // class variable

05: public Types (String s) // s is a constructor parameter

06: {

07: // constructor code f.

08: }

09: public createURL (String urlString) //urlString is a method parameter
10: {

11: String name = "example"; // name is a local variable

12: try

13: {

14: URL url = new URL(urlString) ;

15: }

16: catch (Exception e) // e is a exception-handler parameter
17: {

18: // handle exception

19: }

20: }

21: }

Variable Scope

Variable scope is defined as the block of code in which the variable can be
referred to by its simple name. A simple name is a single identifier for a vari-
able. The instance variable x on line 3 has a simple name of “x.” Instance vari-
ables and class variables have a scope of the entire the class or interface in
which the variable was declared. The scope of field members x and y is the
entire body of the Types class. Method parameters have a scope of the entire
body of the method. Constructor parameters have a scope of the entire body of
the constructor. Exception-handler parameters have a scope of the entire body
of the catch statement. The scope of a local variable is the entire block of code
in which it was declared. The local variable name, which is declared in
the createURL method on line 11, has a scope of the entire body of the
createURL method.

e

3396 P-01

3/06/2000 9:04 AM Page 20 :F

20

Item 6

Which Kinds of Variables Can
Be Hidden?

Instance variables and class variables can be hidden. Local variables and para-
meters can never be hidden. Attempting to hide a parameter with a local vari-
able of the same name results in a compiler error. Similarly, attempting to hide
a local variable with another local variable of the same name results in a com-
piler error.

01: class Hidden

02: |

03: public static void main(Stringl[] args)

04: {

05: int args = 0; // illegal - results in a compiler error
06: String s = "string";

07: int s = 10; // illegal - results in a compiler error
08: }

09: }

In this example, the local variable args cannot be named the same as the
method parameter args. The local variable s on line 7 will also cause a compiler
error because it cannot have the same name as another local variable in the
same scope.

How Instance Variables and Class
Variables Get Hidden

Field members can be hidden in part of their scope by local variables or para-
meters of the same name. Field members can also be hidden by a subclass’s
field member of the same name or through multiple inheritance. A local vari-
able with the same name as a field member will hide that field member in the
scope in which the local variable was declared. A method parameter with the
same name as a field member will hide that field member in the scope of the
body of the method. A constructor parameter with the same name as field
member will hide that field member in the body of the constructor. And an
exception-handler parameter with the same name as a field member will hide
that field member in the scope of the catch block.

01: public class Bike

02:

03: String type;

04: public Bike (String type)

05: {

06: System.out.println("type =" + type);
07: }

08: }

e

3396 P-01

3/06/2000 9:04 AM Page 21 :F

Avoid the “Hidden Field” Pitfall

21

In this example, the constructor parameter {ype hides the instance variable
type. The value of the type variable displayed by the System.out.println
method will be the value of the constructor parameter type, not the instance
variable type.

A subclass’s field member will hide a parent class’s field member of the same
name.

01: public class Bike

02: {
03: String type = "generic";
04: }

01: public class MountainBike extends Bike

02: |
03: String type = "All terrain";
04: }

In this example, the instance variable type in class Bike is hidden by its
subclass’s instance variable type. A subclass’s class variable will hide its super-
class’s class variable or instance variable of the same name. Similarly, a sub-
class’s instance variable will hide its superclass’s instance variable or class
variable of the same name.

Multiply inherited field members will, in effect, hide each other. This in itself
does not cause a compiler error; however, any reference by simple name to the
hidden field members will cause a compiler error. Fields are considered to be
“multiply inherited” if two or more fields with the same name are inherited from
two or more interfaces, or from an interface and superclass.

01: public interface Stretchable

02: |
03: int y;
04: }

01: public class Line

02: |
03: int x;
04: }

01: public class MultiLine extends Line implements Stretchable

02: |

03: public MultiLine ()

04: {

05: System.out.println("x = " + x);
06: }

07: }

This example will compile error free. If a variable named x was added to the
Stretchable interface, then class MultiLine would fail to compile because it
attempts to refer to the multi-inherited variable x by its simple name.

e

3396 P-01

3/06/2000 9:04 AM Page 22 :F

22

Item 6

How to Access a Hidden Field Member

Most field variables can be accessed using the variable’s qualified name as
opposed to its simple name. The “this” keyword will qualify an instance variable
that is being hidden by a local variable. The “super” keyword will qualify an
instance variable that is being hidden by its subclass. A class variable can also
be qualified by placing the class name and a “.” before the class variable’s sim-
ple name.

01: public class Wealthy

02: |
03: public String answer = "Yes!";
04: public void wantMoney ()
05: {
06: String answer = "No!";
07: System.out.println("Do you want to give me $1,000,000? > " +
08: answer) ;
09: System.out.println("Would you like $1,000,000? > " +
10: this.answer) ;
11: }
12: public static void main(Stringl[] args)
13: {
14: Wealthy w = new Wealthy () ;
15: w.wantMoney () ;
16: }
17: |}
Output:

Do you want to give me $1,000,000 > No!
Would you like $1,000,000? > Yes!

In this example, class Wealthy has an instance variable answer. The want -
Money method declares a local variable named answer that hides the instance
variable answer. In order to give the correct response to each of the questions
in the wantMoney method we need to access the local variable answer as well
as the instance variable answer. By using the “this” keyword to qualify the
instance variable we can tell the compiler that we want the instance variable
and not the local variable. As is shown in the output, the response to the first
question is given by the value of the local variable answer. The response to the
second question is given by the value of the instance variable answer, which is
qualified by the “this” keyword.

This example shows how to qualify a hidden instance variable of a parent class:

01: public class StillWealthy extends Wealthy

02: |

03: public String answer = "No!";

e

3396 P-01

3/06/2000 9:04 AM Page 23 :F

Avoid the “Hidden Field” Pitfall

23

04: public void wantMoney ()
05: {
06: String answer = "maybe?";
07: System.out.println("Did you see that henway? > " + answer);
08: System.out.println("Do you want to give me $1,000,000? > " +
09: this.answer) ;
10: System.out.println("Would you like $1,000,000? > " + super.answer) ;
11: }
12: public static void main(String[] args)
13: {
14 : Wealthy w = new Wealthy () ;
15: w.wantMoney () ;
16: }
17: }
Output:

Did you see that henway? > maybe?
Do you want to give me $1,000,000 > No!
Would you like $1,000,000? > Yes!

Notice from the output that the response to the question on line 7 is given by
the value of the local variable. The response to the question on line 8 is given
by the value of the StillWealthy subclass’s instance variable, which is qualified by
using the “this” keyword. The response to the question on line 10 is given by the
value of the superclass’s instance variable, which is qualified by using the
“super” keyword.

How Hidden Variables Differ from
an Overridden Method

Hidden variables differ from overridden methods in several ways. Perhaps the
most important difference is that an instance of a class cannot access its super-
class’s overridden method by using a qualified name or by casting the instance
to that of its superclass.

01: public class Wealthier extends Wealthy

02: |

03: public void wantMoney ()

04: {

05: System.out.println ("Would you like $2,000,000? > " + answer) ;
06: }

07: public static void main(Stringl[] args)
08: {

09: Wealthier w = new Wealthier () ;

10: w.wantMoney () ;

11: ((Wealthy)w) .wantMoney () ;

12: }

13: |}

e

3396 P-01

3/06/2000 9:04 AM Page 24 $
24 Item 6
Output:

Would you like $2,000,000? > Yes!
Would you like $2,000,000? > Yes!

In this example, class Wealthier extends class Wealthy and overrides the
method wantMoney. The main method creates an instance w of class Wealth-
ter and calls w.wantMoney () . Notice by the first line in the output that the
$2,000,000 question is asked. The main method then casts the instance variable
w to its parent class and once again calls the wantMoney method. Notice by
the second line in the output that the $2,000,000 question is still asked. The pre-
vious example shows that from an instance of a subclass, the superclass’s over-
ridden method cannot be accessed by casting the instance to the superclass.

This example shows that a hidden variable differs from an overridden
method because it can be accessed by casting an instance of the subclass to its
superclass.

01: public class Poorer extends Wealthier

02: |
03: String answer = "No!";
04: public void wantMoney ()
05: {
06: System.out.println("Would you like $3,000,000? > " + answer);
07: }
08: public static void main(Stringl[] args)
09: {
10: Poorer p = new Poorer() ;
11: ((Wealthier)p) .wantMoney () ;
12: System.out.println("Are you sure? > " + ((Wealthier)p) .answer);
13: }
14: |}
Output:

Do you want $3,000,000? ? No!
Are you sure? > Yes!

Class Poorer extends class Wealthier; the main method creates an instance
p of class Poorer. The main method then casts instance p to its superclass. As
was explained in the previous example, because the wantMoney method is
overridden, the superclass’s wantMoney method cannot be accessed by cast-
ing to the superclass. Therefore, the wantMoney method of class Poorer gets
called, which responds with the answer “No!”. The main method then asks the
question “Are you sure? >". The answer is the value of the superclass’s variable,
not the value of the subclass’s variable. This occurs because the subclass just
hides the superclass’s field member so casting the instance to its superclass
allows access to its superclass’s field members. Another difference between

e

3396 P-01

3/06/2000 9:04 AM Page 25 CE

Forward References

25

data hiding and method overriding is that a static method cannot override a
superclass’s instance method. A static variable, however, can hide a super-
class’s instance variable of the same name. Similarly, an instance method can-
not override a superclass’s method of the same name but different signature. A
field member can hide a superclass’s field member of the same name even if it
is of a different type.

Avoiding the “hidden field” pitfall by understanding the points discussed in
this item will help you achieve the desired results of your application as well as
save you countless hours debugging complex programs.

Item 7: Forward References

Class variables and static initializers are executed when a class is loaded into
the JVM. Section 8.5 of the Java Language Specification notes that “static ini-
tializers and class variable initializers are executed in textual order and may not
refer to class variables declared in the class whose declarations appear textu-
ally after the use....” In other words, these statements are processed in the
order in which they appear in the code. Normally, the compiler will catch any
forward references. Consider the following code:

1: public class ForwardReference

2: {
3: int first = second; // this will fail to compile
4: int second = 2;

5: }

Attempting to compile this class will result in an error:

ForwardReference.java:3: Can't make forward reference to second in class
ForwardReference.

So, even though both first and second are in the same scope, the language
specification disallows this kind of invalid initialization, and the compiler will
catch this.

It is possible, though, to circumvent this protection. Java allows method calls
to be used to initialize class variables, and accesses of class variables by meth-
ods are not checked in this way. The program that follows will compile cleanly.

01: public class ForwardReferenceViaMethod

02: {

03: static int first = accessTooSoon() ;
04: static int second = 1;

05:

06: static int accessTooSoon ()

07: {

e

3396 P-01

3/06/2000 9:04 AM Page 26 :F

26 Item 8
08: return (second) ;
09: }
10:
11: public static void main (Stringl[] args)
12: {
13: System.out.println ("first = " + first);
14: }
15: }

Executing it, however, results in accessing the default value of second (which
is 0) before it gets initialized to 1. So, first is assigned the value of 0 instead of 1.

There’s no simple solution to this problem. If you use method calls to initial-
ize static variables, you have to ensure that those methods don’t depend on
other static variables that are declared later in the file.

Item 8: Design Constructors for Extension

Perhaps the most significant advantage of object-oriented languages in general,
and Java in particular, is that code can be easily reused. One of the most com-
mon ways to reuse a class is to extend it, and then add or change the function-
ality to meet your requirements. Unfortunately, many inexperienced developers
do not write code that is easily extensible.

There are many situations in the process of software development in which
you must make trade-offs between multiple goals. For example, optimizing
often results in code that is more complex, harder to maintain, and less
portable. When it comes to extensibility, however, you don’t usually lose any-
thing when you make your code more extensible.

When you develop a class, you can encounter many pitfalls that discourage,
or even prevent, extensibility. Avoiding these pitfalls as you design or imple-
ment your code is often easy, if you're aware of them.

One of the most common pitfalls I've seen is in the implementation of con-
structors. No matter how well designed your methods are, if you don’t provide
the right constructors, other developers will have trouble extending your class.
Because you can’t override constructors, you have to work with whatever the
base class provides.

If your constructor tries to do too much, it may require any subclass to do
things that are not possible for it to do. This is especially true if the developer
writing the subclass doesn’t have access to the source code. For example, con-
sider the following classes that provide a simple multiple-choice menu object.

01: import java.awt.*;

02: import java.awt.event.*;
03: import java.io.*;

04: import java.util.*;

3396 P-01 3/06/2000 9:04 AM Page 27 (F

Design Constructors for Extension 27

05:

06: import javax.swing.*;

07: import javax.swing.event.*;

08:

09: public class ListDialog extends JDialog

10: implements ActionListener, ListSelectionListener

11: {

12: JList model;

13: JButton selectButton;

14: ILDListener listener;

15: Object[] selections;

16:

17: public ListDialog (String title,

18: String[] items,

19: LDListener listener)

20: {

21: super ((Frame)null, title);

22:

23: JPanel buttonPane = new JPanel () ;

24: selectButton = new JButton ("SELECT") ;

25: selectButton.addActionListener (this);

26: selectButton.setEnabled (false); // nothing selected yet
27: buttonPane.add (selectButton) ;

28:

29: JButton cancelButton = new JButton ("CANCEL") ;
30: cancelButton.addActionListener (this);

31: buttonPane.add (cancelButton) ;

32:

33: this.getContentPane () .add (buttonPane, BorderLayout.SOUTH) ;
34:

35: this.listener = listener;

36: setModel (items) ;

37: }

38:

39: void setModel (String[] items)

40: {

41: if (this.model != null)

42: this.model.removelListSelectionListener (this);
43 this.model = new JList (items) ;

44 : model .addListSelectionListener (this);

45:

46 : JScrollPane scroll = new JScrollPane (model) ;

47 : this.getContentPane () .add (scroll, BorderLayout.CENTER) ;
48: this.pack();

49: }

50:

51: /** Implement ListSelectionListener. Track user selections. */
52:

53: public void valueChanged (ListSelectionEvent e)

54: {

55: selections = model.getSelectedvValues() ;

e

3396 P-01

3/06/2000 9:04 AM Page 28 (F

28 Item 8
56: if (selections.length > 0)
57: selectButton.setEnabled (true) ;
58: }
59:
60: /** Implement ActionListener. Called when the user picks the
61: * SELECT or CANCEL button. Generates the LDEvent. */
62:
63: public void actionPerformed (ActionEvent e)
64: {
65: this.setVisible (false);
66: String buttonLabel = e.getActionCommand () ;
67: if (buttonLabel.equals ("CANCEL"))
68: selections = null;
69: if (listener != null)
70: {
71: LDEvent lde = new LDEvent (this, selections);
72: listener.listDialogSelection (1lde) ;
73: }
74 : }
75:
76: public static void main (String[] args) // self-testing code
77: {
78: String[] items = (new Stringl]
79: {"Forest", "Island", "Mountain", "Plains", ”Swamp"});
80: ILDListener listener =
81: new LDListener ()
82: {
83: public void listDialogSelection (LDEvent e)
84: {
85: Object[] selected = e.getSelection();
86 : if (selected != null) // null if user cancels
87: for (int 1 = 0; i < selected.length; i++)
88: System.out.println (selected[i].toString()) ;
89: System.exit (0) ;
90: }
91: };
92:
93: ListDialog dialog =
94 : new ListDialog ("ListDialog", items, listener);
95: dialog.show () ;
96: }
97: }

01:
02:
03:
04:

01:
02:

public interface LDListener

{

For completeness, here are the LDListener and LDEvent classes:

public void listDialogSelection (LDEvent e);

import java.util.EventObject;

e

3396 P-01

3/06/2000 9:04 AM Page 29 :F

Design Constructors for Extension

29

03: public class LDEvent extends java.util.EventObject

04: {

05: Object source;

06: Object[] selections;

07:

08: public LDEvent (Object source, Object[] selections)
09: {

10: super (source) ;

11: this.selections = selections;
12: }

13:

14: public Object[] getSelection()
15: {

16: return (selections) ;

17: }

18: }

The ListDialog class appears to be fairly well written, but it will turn out to
be rather difficult to extend. Let’s try. Suppose you have a requirement to
develop a menu that will present a list of audio files to the user. You want the
user to be able to hear each sound as she clicks on the audio file in your inter-
face. Because you don’t want to force your clients to specify all of the audio
files, you decide to provide a simple API that accepts a directory name and
determines the list of audio files in that directory.

This would seem to be a simple extension of the ListDialog class. You know
you'll need to listen for ListSelectionEvents, so you can play the selected
sound. This is easy because you have access to the model, and you can simply
call addListSelectionListener (..), as shown in line 7 in the code that
follows. If the model had been private with no accessor method, you would
have been unable to add your listener, and you would have had to start from
scratch. So far, so good.

When you try to extend ListDialog, however, its only constructor (line 17 in
the first listing) requires that you send an array of String items—which you
don’t yet have. And, because the call to super (..) must be the first thing your
constructor does, there’s no way for you to get the list of items and then create
the ListDialog.

But don’t give up yet; there’s got to be a workaround. You look at the javadoc
documentation and notice that there’s a setModel (..) method that sounds
promising. So, you first try to implement your constructor by instantiating the
ListDialog with a null value for the items argument, and then you call set -
Model (...) after you've determined your list of files (lines 4-6).

01: public SoundDialog (String title, LDListener listener,

02: String path)
03: {
04: super (title, null, listener);

e

3396 P-01 3/06/2000 9:04 AM Page 30 CE

30 Item 8
05: String[] items = getItems (path);
06: setModel (items);
07: model .addListSelectionListener (this);
08: model.setSelectionMode (ListSelectionModel.SINGLE_SELECTION) ;
09: }

This seems reasonable, but when you try to run your class, you get the fol-
lowing error:

Exception occurred during event dispatching:
java.lang.NullPointerException

at java.awt.Window.pack (Window.java:259)
at ListDialog.setModel (ListDialog.java:48)
at ListDialog.<init>(ListDialog.java:36)
at SoundDialog.<inits>(SoundDialog.java:18)
at SoundDialog.main(SoundDialog.java:89)

Examining this stack trace, you realize the ListDialog is calling its
setModel (..) method from its constructor, and that is producing these
undesirable results. After some debugging, you determine that the NullPointer-
Exception is caused by the empty model (trying to call pack () on aJList with
no items).

Now what? Well, lucky for you, ListDialog’s setModel (...) method isn’t pri-
vate, so you can override it with your own, safer version. Notice that you had to
move your SoundDialog’s calls, which change the model into your version of
setModel (lines 27-28) because it’s possible for one of your clients to use this
public method, too. Here’s the working version:

01: import java.applet.*;

02: import java.awt.*;

03: import java.io.*;

04: import java.net.*;

05:

06: import javax.swing.*;

07: import javax.swing.event.*;

08:

09: public class SoundDialog extends ListDialog

10: implements FilenameFilter, ListSelectionListener

11: {

12: String selection;

13:

14: public SoundDialog (String title, LDListener 1dl, String path)
15: {

16: super (title, null, 1d1);

17: String[] items = getItems (path);

18: setModel (items);

19: }

e

3396 P-01

3/06/2000 9:04 AM Page 31 (F

Design Constructors for Extension

31

20:
21:
22:
23:
24 :
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44 :
45:
46:
47 :
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:

public void setModel (String[] items)

{
if (items != null)
{
super.setModel (items) ;
model .addListSelectionListener (this);
model.setSelectionMode
(ListSelectionModel.SINGLE_SELECTION) ;
1
}
public String[] getItems (String path)
{
File file = new File (path);
File soundFiles[] = file.listFiles (this);
String[] items = new String [soundFiles.length];
for (int 1 = 0; i < soundFiles.length; i++)
items[i] = soundFiles[i] .getName () ;
return (items) ;
1

// implement FilenameFilter
public boolean accept (File dir, String name)

{
return (name.endsWith (".aiff") ||
name.endsWith (".au") |
name.endsWith (".midi") ||
name.endsWith (".rmf") ||
name.endsWith (".wav"))
}

// implement ListSelectionListener
public void valueChanged (ListSelectionEvent e)
{
super.valueChanged (e) ;
JList items = (JList) e.getSource() ;
String fileName = items.getSelectedValue () .toString() ;
if (!fileName.equals (selection))

{ selection = fileName;
play (selection);

1
}
private void play (String fileName)
{

try

{

File file = new File (fileName) ;
URL url = new URL ("file://" + file.getAbsolutePath()) ;

e

3396 P-01

3/06/2000 9:04 AM Page 32 :F

32 Item 8
71: AudioClip audioClip = Applet.newAudioClip (url);
72 if (audioClip != null)
73: audioClip.play () ;
74: }
75 catch (MalformedURLException e)
76: {
77 System.err.println (e + ": " + e.getMessage()) ;
78 : }
79: }
80:
81: public static void main (Stringl[] args) // self-test
82: {
83: LDListener listener =
84: new LDListener ()
85: {
86: public void listDialogSelection (LDEvent e)
87: {
88: Object[] selected = e.getSelection();
89: if (selected != null) // null if user cancels
90: for (int 1 = 0; i < selected.length; i++)
91: System.out.println (selected[i].toString()) ;
92: System.exit (0);
93: }
94: }i
95: SoundDialog dialog =
96: new SoundDialog ("SoundDialog", listener, ".");
97: dialog.show() ;
98: }
99: }

All of these workarounds would have been unnecessary if the original ver-
sion of ListDialog had only provided the appropriate constructors. If you find
yourself implementing a constructor that calls a private method or requires
numerous arguments, make sure you consider the implications. Constructors
with lots of arguments can be appropriate, especially if you're providing them
as a convenience in addition to other, less burdensome constructors. But if
it's your only constructor, consider adding additional versions that accept
variations.

If you provide a no-argument constructor and the right additional methods to
instantiate your class, you’ll be fine. This does require some extra work, in that
you have to be careful in your other methods not to use variables that haven’t
been initialized yet.

If your bare-bones constructor doesn’t have enough information to fully
instantiate your class, consider restricting access to it. You can do this by leav-
ing off the “public” keyword. This will still allow any subclasses to call it, but
you won’'t have to worry as much about other developers using it to create
invalid objects.

e

3396 P-01

3/06/2000 9:04 AM Page 33 :F

Passing Primitives by Reference

33

Notice that (like most Swing components) the JList class we've been using
in this example does provide a no-argument constructor, even though an empty
JList is not really valid. If you use this constructor, you need to call setList-
Data(...) or setModel (.. .) before using the JList. Obviously, the Swing
components were designed to be easy to extend.

Item 9: Passing Primitives by Reference

If you are a C or C++ programmer you may have been a little disappointed to
learn that Java exposes no concept of a pointer to a programmer. The lack of
pointers in Java prevents at least two things you may be accustomed to doing
with pointers: performing pointer arithmetic and returning multiple values
from a function. As it turns out, only the first one is not allowed in Java. The
second, returning multiple values from a Java method, is possible by passing
arguments by reference instead of by value. All instantiated objects in Java are
accessed by using a reference. Variable types that refer to classes, interfaces,
arrays, and objects are all classified as reference types. Java also provides an-
other type called a primitive. Primitives are used to store a specific type of
information, such as a number or character. Java provides the following primi-
tive types: boolean, byte, short, int, long, char, float, and double. An important
concept to get across is that primitive types are not objects and therefore can-
not be passed by reference.

Did you just read what you thought you did? Then what is the point of this
section if primitives cannot be passed by reference? And why would you want
to pass a primitive by reference anyway?

Even though primitives cannot be passed by references directly, they can be
passed indirectly. What this implies is that you must use a reference type to
wrap a primitive if you want to pass a primitive by reference. I can think of at
least two cases where passing a primitive by reference is desired:

m Returning multiple primitive values from a function

m Passing primitive values to methods that accept objects only as argu-
ments (for example, Hashtable)

Let’s look at an example of doing these two cases the wrong way. Take a look
at the PassPrimitiveByReferencel source listed in the code that follows. This
class tries to accomplish both of the desired objectives previously listed, but
you can see that there are two major problems. The first problem you see is that
the program will not compile because we are trying to pass primitive types to
the Hashtable.put () method. This particular method accepts only objects
as arguments. The second problem you see is code in the getPersonInfo ()
method. The intent of the method is to be able to return multiple values to the

e

3396 P-01

3/06/2000 9:04 AM Page 34

34

—p—

Item 9

method caller by assigning values to the method arguments. The problem here
is that primitive types are passed only by value, which means when they are
passed to a method call, a copy of the primitive type is made for the exclu-
sive use of the method. When the getPersonInfo () method assigns new
values to the method arguments, it changes only the copies of the variables
available to the method; it does not change the original variables.

01: import java.util.Hashtable;

error

02:

03: public class PassPrimitiveByReferencel

04: {

05: public static void main (String argsl[])

06: {

07: String mname = null;

08: int age = 0;

09: float weight = 0f;

10: boolean isMarried = false;

11:

12: getPersonInfo(name, age, weight, isMarried);

13:

14: System.out.println("Name: " + name +

15: "\nAge: " + age +

16: "\nWeight: " + weight +

17: "\nIs Married: " + isMarried);

18:

19: storePersonInfo (name, age, weight, isMarried) ;

20: }

21:

22: private static void getPersonInfo (String name, int age,
23: float weight, boolean isMarried)
24 : {

25: name = "Robert Smith";

26: age = 26;

27: weight = 182.7f;

28: isMarried = true;

29: }

30:

31: private static void storePersonInfo (String name, int age,
32: float weight, boolean isMarried)
33: {

34: Hashtable h = new Hashtable() ;

35: h.put ("name", name) ;

36: h.put ("age", age); // produces compile time
37: h.put ("weight", weight); // produces compile time error
38: h.put("isMarried", isMarried); // produces compile time error
39: }

40: }

Now let’s look at the solution to the problems. The PassPrimitiveByRefer-
ence? class listed in the code that follows solves both problems presented in

e

3396 P-01

3/06/2000 9:04 AM Page 35 CE

Passing Primitives by Reference

35

the PassPrimitiveByReferencel example. The problem with the Hashtable has
been corrected by using the Java class equivalents of the primitive types. In the
java.lang package, you will find corresponding classes to all the primitive types.
In this example, we used Integer for int, Float for float, and Boolean for
boolean. The Java class equivalent of a given primitive type serves to encapsu-
late the primitive type and provides various utility methods. This could have
been the solution to our second problem as well, but the Java primitive class
equivalents are immutable (they contain no set (...) method). Instead, we
solve the second problem by creating a one-dimensional array of a given type
and passing the array to the method. Remember that earlier I mentioned that
arrays are reference types. In this particular case, it comes in handy because
now I can set the values of primitive types in the getPersonInfo () method,
and they are available to the calling method.

01: import java.util.Hashtable;

02:

03: public class PassPrimitiveByReference2

04: {

05: public static void main (String argsl[])

06: {

07: String[] name = new String[1l];

08: int [] age = new int[1];

09: float [] weight = new float[1];

10: boolean[] isMarried = new boolean|[1];

11:

12: getPersonInfo (name, age, weight, isMarried) ;

13:

14: System.out.println("Name: " + name[0] +

15: "\nAge: " + agel[0] +

16: "\nWeight: " + weight[0] +

17: "\nIs Married: " + isMarried[0]) ;
18:

19: String name2 = name[0];

20: Integer age2 = new Integer (agel[0]);

21: Float weight2 = new Float (weight [0]) ;

22: Boolean isMarried2 = new Boolean(isMarried[0]) ;
23:

24: storePersonInfo (name2, age2, weight2, isMarried2);
25: }

26:

27: private static void getPersonInfo (String[] name, int[] age,
28: float [] weight, boolean[] isMarried)
29: {

30: name [0] = "Robert Smith";

31: age[0] = 26;

32: weight [0] = 182.7f;

33: isMarried[0] = true;

34: }

e

3396 P-01 3/06/2000 9:04 AM Page 36 :F

36 Item 10
35:
36: private static void storePersonInfo (String name, Integer age,
37: Float weight, Boolean isMarried)
38: {
39: Hashtable h = new Hashtable() ;
40: h.put ("name", name) ;
41: h.put ("age", age);
42: h.put ("weight", weight) ;
43: h.put ("isMarried", isMarried);
a4: }
45: }

Running PassPrimitiveByReference2 will produce the following output:

Name: Robert Smith
Age: 26

Weight: 182.7

Is Married: true

This demonstration of passing primitives by an array reference by no means
advocates its use. I could have easily created a class that contained the primi-
tives I wanted as instance variables and passed the object to the get Person-
Info () method to have the values set. Encapsulating things in an object is
usually the better way to do it, but you may run into situations where passing
primitives by an array reference is the only option.

Item 10: Boolean Logic and
Short-Circuit Operators

Like C++ (and C), Java supports bitwise operators (& and |) for bit-masking
operations. Unlike C++, Java supports both boolean logical operators (& and |)
and conditional and/or operators (&& and Il). This can lead to some problems
if you're not careful.

If you were to program a line like this in C++, many compilers would warn
you.

if (ptr != null & ptr-scount > 1) // wrong operator!
For example, the Gnu C compiler produces the warning:
warning: suggest parentheses around comparison in operand of &

Although this is legal code, it’s probably not what you want. If the p¢r variable
is null, you’ll attempt to dereference a null pointer in the right-hand comparison

e

3396 P-01

3/06/2000 9:04 AM Page 37 :F

Boolean Logic and Short-Circuit Operators

37

(and the program will crash). The compiler can make the assumption that you
probably did not want to do a bitwise AND there.

In Java, however, the compiler can’t make that assumption. If both sides of
the expression are boolean values, then the “&” operator will be treated as a
boolean logical operator, not a bitwise AND (see JLS 15.21.2). Let’s say you
want to check if a Vector object has any elements before you use it. You might
unintentionally code it this way:

if ((v != null) & (v.size() > 0)) // wrong operator!

The compiler won't produce a warning because that may very well be what
you intended. The code will still throw a NullPointerException if v is null.

What you want, of course, is the short-circuit operator. The boolean logical
and conditional operators provide similar functionality, with one significant dif-
ference. The conditional operators (&& and II) will short-circuit. That is, if the
result of the first (left) expression is enough to determine the result of the con-
ditional operation, then the second (right) expression will not be evaluated.
Here’s the correct line:

if ((v != null) && (v.size() > 0))

The same behavior holds true for the OR operators, though these are much
less problematic than the common null-check described previously. The “I”
operator with boolean operands will be treated as a logical operator, returning
true if either operand is true. Both operands will be evaluated, even if the first
one is true. The “II” conditional operator will short-circuit instead. You're not
likely to get in trouble using the “I” operator, unless your operands produce
some side-effect you weren’t counting on.

The simple solution is to always use the conditional operators && and |I.
They're safer and more efficient because fewer operands need to be evaluated.
If you need to ensure both operands are evaluated, make sure you comment
your use of the logical & or | operator.

3396 P-01 3/06/2000 9:04 AM Page 38 j\%

